Cryo-Imaging Lets Researchers Image Single Cells

Huge Two-Day Clean Sweep Auction July 24-25th. Click Here to Bid!

advertisement
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Send us your Comments
advertisement

 

advertisement

 

More Industry Headlines

Optimizing the EHR user experience Examining how we got here, and the best path to move ahead

FDA gives RaySearch green light for RayStation 8B platform First treatment planning system to offer machine learning applications

Some medical devices exempted from China tariffs Among the recently announced 110 exemptions

Rising workloads and technology are main causes of clinician burnout Called a 'public health crisis' by 92 percent of survey respondents

The road ahead for breast density awareness It's been a good year for advocacy, here's what happens next

Providers in need of more specialists, fewer primary care physicians, says report Facing projected shortage in a number of specialties

The feds want to give consumers more control over their data — are healthcare organizations prepared?

Claims data will power new research initiative developing predictive models to fight opioid crisis Understanding risk factors and addressing them

Global breast ultrasound market expected to reach $1.7 billion by 2023 Driven by novel vendor techniques, machine learning and deep-learning algorithms

Agiliti acquires Zetta Medical Technologies Extends management and maintenance capabilities for medical imaging equipment

A cryo-imaged section of a mouse

Cryo-Imaging Lets Researchers Image Single Cells

by Brendon Nafziger , DOTmed News Associate Editor
New imaging technology using ultra-fine slices of frozen specimens could provide researchers with unprecedented levels of detail -- down to a single cell.

Dubbed cryo-imaging by its maker, David Wilson, PhD, a biomedical engineer at Case Western Reserve University, the device is in the prototype stage at his lab in Cleveland, Ohio.

Story Continues Below Advertisement

New & Refurbished C-Arm Systems. Call 702.384.0085 Today!

KenQuest provides all major brands of surgical c-arms (new and refurbished) and carries a large inventory for purchase or rent. With over 20 years in the medical equipment business we can help you fulfill your equipment needs



According to Dr. Wilson, his modality -- so far only designed for animal studies -- can process an eye-opening 50-75 gigabytes of visual data, allowing experimenters to microscopically image an entire mouse.

"It offers tremendously better resolution than micro-MRI or mico-PET or micro-CT," Dr. Wilson tells DOTmed News.

A cryo-imaging prototype.



The cryo-imaging system consists of a frozen-slicer, called a cryomicrotome; the bright field and fluorescent microscopes for imaging; a robotic positioner for holding everything in place; and analysis software that "allows us to interact with these enormous datasets and display a mouse on the screen and zoom in on a organ, zoom in further to a tissue, and zoom in all the way to a single cell," says Dr. Wilson.

To cryo-image a mouse, first the animal is euthanized. Next, it is snap frozen in liquid nitrogen and then placed under the cryomicrotome where it's sectioned into ultra-skinny slices only 10-micrometers thick -- about one-tenth the width of a strand of human hair. Images are then taken with a block face using both fluorescent technology, for single-cell resolution, and color bright-field imaging so the results can be seen in all their natural color.

In a statement issued yesterday by Case Western, James Basilion, MD, a radiologist and colleague of Dr. Wilson's, says the main advantage the technology offers is its level of resolution. "No longer do we need to 'guess' which cells are taking up agents from radiological biodistribution studies," he's quoted as saying. "We now can visualize them."

Dr. Wilson has founded a company, called BioInVision, to commercialize the device, a prototype now in its second generation. He has also published several papers on the technology, most recently in the Annals of Biomedical Engineering last month.

Related: