Another significant issue to consider is the floor. All RF shielding systems have a floor that is between 5/8" and 1-1/2" thick. In some applications, depending upon the vibration and acoustic requirements, the floors may be thicker than 1-1/2". This can create an Americans with Disabilities Act (ADA) issue requiring a ramp into the room; this may be inconvenient and create logistical issues for moving patients. Therefore, when designing a new space, a floor depression for the MRI suite should be included. This will allow the RF shielding vendor to install the RF shielding system with a flat threshold or a threshold that meets ADA requirements, eliminating the need for a ramp into the room. For existing buildings, concrete should be removed to depress the slab.
Radiation Shielding

Ad Statistics
Times Displayed: 114080
Times Visited: 6783 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
Imaging procedures that use ionizing radiation pose a health risk to the clinical staff and patients as well as to members of the public in spaces surrounding the imaging suite. Unlike the patient, who derives a medical benefit from the radiation used in the procedure, these individuals must be carefully protected from exposure. Medical radiation comes from two types of sources: X-ray tubes, such as in CT scanners, radiographic rooms, and fluoroscopy suites, and radioactive materials, which are used in procedures such as nuclear medicine, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). There are also hybrid imaging systems such as PET/CT and SPECT/CT which utilize both a radioactive source and an X-ray source.
All sources of ionizing radiation are generally shielded the same way - with layers of lead sheeting applied to the existing structural barriers. Other materials may be used, such as concrete, steel, or gypsum wallboard. A radiation physicist, such as a medical physicist or health physicist, should be consulted to determine these shielding requirements; in many states this consultation is required by law. There are some important differences in the design approach to facilities using X-ray systems and those using radioactive materials. Given the additional cost and weight associated with lead-shielded building systems, facility designers should take prudent steps to reduce the amount of lead needed.