In either case, care should be taken to configure the imaging suite so that the imaging technologist will have full control to prevent members of the public from inadvertently coming into contact with sources of radiation. This can mean simply configuring the direction of a door swing so that a technologist will have an unobstructed view of a doorway when seated at his or her workstation, or a more difficult approach in providing for proper security of areas where radioactive materials are stored.
Acoustics

Ad Statistics
Times Displayed: 114080
Times Visited: 6783 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
Acoustics is an important issue that should be investigated when designing a site for medical imaging systems. Unlike EMI and vibration concerns, acoustic issues are often created by the imaging equipment itself. In particular, MRI systems can be quite disruptive to the surrounding environment. MRI systems can create airborne noise, which is the propagation of acoustic noise through the air, and structure-borne noise, which is the propagation of acoustic noise through the building structure. As a result, acoustic solutions typically need to address both airborne and structure-borne noise in order to be effective. Typical airborne acoustic solutions involve detailed wall, ceiling and floor construction to meet predetermined acoustic criteria. The solution should also detail how penetrations, HVAC ducts, and gaps in construction around the imaging suite should be treated. Recommended wall and ceiling construction usually involves some combination of gypsum board, stud placement, sound batt insulation, air gaps, and isolation clips to address both the transmission and reflection of acoustic noise.
Transportation systems such
as subway trains can cause
electromagnetic interference with
medical imaging systems.
Structure-borne acoustic solutions can be more complicated. Typically, a structure-borne solution involves some combination of weight and isolation material. For example, with proper site planning, a vibration slab that is isolated from the surrounding structure and is placed on spring isolators could also be a cost-effective solution for structure-borne acoustic noise.