DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
>
> This Story

Forward Printable StoryPrint Comment

 

Cardiology Homepage

Xeltis closes €45 million in oversubscribed Series C financing to advance aortic and pulmonary valve programs

Surgical imaging market worth $1.63 billion by 2022

Cardiac MR added to Digisonics Congenital Cardiology Solution with Medis Plug-in

First transcatheter implant for diastolic heart failure successful

Diagnostic test helps primary care docs rule out pathologic heart murmur in kids

Cardiac Insight secures first cardiology customers for its Cardea SOLO wearable ECG sensor

AHA President resting comfortably after minor heart attack

Catastrophic costs for hospitalization expenses common among uninsured heart and stroke patients

Stryker announces publication of the DAWN trial results in the New England Journal of Medicine

ECG equipment and management system market worth $7.63 billion by 2025

Combining medicine and engineering to repair a damaged heart

Press releases may be edited for formatting or style
The combination of the Canadian Light Source (CLS) synchrotron’s unique biomedical imaging and therapy (BMIT) beamline and the vision of a multi-discipline researcher from the University of Saskatchewan in confirming fiction as fact was published in the September issue of Tissue Engineering, one of the leading journals in this emerging global research field of tissue regeneration.

U of S researcher Mohammad Izadifar says he is combining medicine and engineering to develop ways to repair a damaged heart.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



“The problem is the heart cannot repair itself once it is damaged due to a heart attack.” he explained.

Izadifar has conducted his research out of three places on campus: the College of Engineering, the CLS and the College of Medicine where he has been certified in doing open heart surgery on rats, having trained in all the ethical protocols related to these research animals.

And thanks to the confirmation photo images he has from his collaboration with the CLS, Izadifar has already proven the 3D printed human cells, which he has dubbed the “heart patch,” can start to grow as intended in theory.

Once implanted in the laboratory mice, the heart patch is invisible to regular medical imaging. Izadifar has developed an X-ray imaging technique at the CLS to monitor the 3D-printed heart patch after implanting them in the laboratory mice. The CLS-derived pictures submitted to the journal show a 3D-printed heart patch with human cells arranged in 200 micron-wide strands with the distance between each strand being 400 microns. One micron is one-thousandth of a millimeter.

Izadifar says the key in printing live human tissue is finding the right gel medium to become the “ink” for the printer.

His chosen “ink” or hydrogel is a natural, algae-based gel that is proven to be biocompatible with human body and also non-immunogenic, meaning the human body shouldn’t reject the gel. It is also biodegradable because, at some point, the body should just absorb the gel and get rid of it.

“My goal is to take stem cells from the patient and then, in-vitro, I expand and instruct them to become heart cells,” he explained.

When the heart starts absorbing the patch, those cells grow and slowly turn the 3D printed patch from soft tissue into dense, heart muscle. In the mean time, if everything is working as it should, the rat’s heart starts shooting out blood vessels into the heart patch so the new tissue gets a healthy supply of oxygen.

The key, says Izadifar, is getting the cells to align in the 3D printed heart patch, ensure they are tightly joined and that they are capable of conducting electricity, just like natural heart muscle.

“If it is to become heart tissue, the patch needs to be robust and conductive.

“With different 3D printing patterns, we can control the toughness, conductivity and cell alignment of the patch,” he said. “With the medical imaging technique that I developed at the CLS, we would be able to monitor the 3D-printed heart patch during the healing process.”

Source: University of Saskatchewan

Cardiology Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2017 DOTmed.com, Inc.
ALL RIGHTS RESERVED