dismiss

Save the Date - Our next Clean Sweep Live Auction will be on Tuesday, September 26th at 9:30AM EST

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
>
> This Story

Forward Printable StoryPrint Comment

 

Cardiology Homepage

Regional Hospital of Scranton first to receive American Heart Association’s Cardiovascular Center of Excellence accreditation

First European advice on deep vein thrombosis in EHJ

Global cardiovascular surgical devices market to reach $102252 million by 2025

Rapid Medical: first patient enrolled to the TIGERTRIEVER acute ischemic stroke registry

ASNC and ASE team up to expand the ImageGuide Registry

AstraZeneca HealthCare Foundation awards nearly $1 million to 10 innovative heart health programs

Global fluoroscopy equipment market to reach $2.79 billion by 2022

Efficacy of Philips' Stellarex .035" low-dose drug-coated balloon demonstrated in clinical trial at two years

ScImage and INVIA partnership announced

Pacemaker devices market to rise $8.1 billion by 2022

Combining medicine and engineering to repair a damaged heart

Press releases may be edited for formatting or style
The combination of the Canadian Light Source (CLS) synchrotron’s unique biomedical imaging and therapy (BMIT) beamline and the vision of a multi-discipline researcher from the University of Saskatchewan in confirming fiction as fact was published in the September issue of Tissue Engineering, one of the leading journals in this emerging global research field of tissue regeneration.

U of S researcher Mohammad Izadifar says he is combining medicine and engineering to develop ways to repair a damaged heart.

Story Continues Below Advertisement

CT, MRI, NM, SPECT/CT, PET & PET/CT service, refurbished systems and parts

Accelerate your ROI with our Black Diamond Certified refurbished systems. One year warranty - ISO 13485 Certified - FDA registered - Over 65k parts in inventory DOTmed Certified



“The problem is the heart cannot repair itself once it is damaged due to a heart attack.” he explained.

Izadifar has conducted his research out of three places on campus: the College of Engineering, the CLS and the College of Medicine where he has been certified in doing open heart surgery on rats, having trained in all the ethical protocols related to these research animals.

And thanks to the confirmation photo images he has from his collaboration with the CLS, Izadifar has already proven the 3D printed human cells, which he has dubbed the “heart patch,” can start to grow as intended in theory.

Once implanted in the laboratory mice, the heart patch is invisible to regular medical imaging. Izadifar has developed an X-ray imaging technique at the CLS to monitor the 3D-printed heart patch after implanting them in the laboratory mice. The CLS-derived pictures submitted to the journal show a 3D-printed heart patch with human cells arranged in 200 micron-wide strands with the distance between each strand being 400 microns. One micron is one-thousandth of a millimeter.

Izadifar says the key in printing live human tissue is finding the right gel medium to become the “ink” for the printer.

His chosen “ink” or hydrogel is a natural, algae-based gel that is proven to be biocompatible with human body and also non-immunogenic, meaning the human body shouldn’t reject the gel. It is also biodegradable because, at some point, the body should just absorb the gel and get rid of it.

“My goal is to take stem cells from the patient and then, in-vitro, I expand and instruct them to become heart cells,” he explained.

When the heart starts absorbing the patch, those cells grow and slowly turn the 3D printed patch from soft tissue into dense, heart muscle. In the mean time, if everything is working as it should, the rat’s heart starts shooting out blood vessels into the heart patch so the new tissue gets a healthy supply of oxygen.

The key, says Izadifar, is getting the cells to align in the 3D printed heart patch, ensure they are tightly joined and that they are capable of conducting electricity, just like natural heart muscle.

“If it is to become heart tissue, the patch needs to be robust and conductive.

“With different 3D printing patterns, we can control the toughness, conductivity and cell alignment of the patch,” he said. “With the medical imaging technique that I developed at the CLS, we would be able to monitor the 3D-printed heart patch during the healing process.”

Source: University of Saskatchewan

Cardiology Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2017 DOTmed.com, Inc.
ALL RIGHTS RESERVED