Over 400 New Jersey Auctions End Today - Bid Now
Over 1650 Total Lots Up For Auction at Four Locations - MA 04/30, NJ Cleansweep 05/02, TX 05/06, NJ 05/08

Researchers use AI to create a quick and easy method for detecting heart disease

Press releases may be edited for formatting or style | April 17, 2018 Artificial Intelligence Cardiology Health IT
Heart disease is the leading cause of death for both men and women, according to the Centers for Disease Control and Prevention (CDC). In the U.S., one in every four deaths is a result of heart disease, which includes a range of conditions from arrhythmias, or abnormal heart rhythms, to defects, as well as blood vessel diseases, more commonly known as cardiovascular diseases.

Predicting and monitoring cardiovascular disease is often expensive and tenuous, involving high-tech equipment and intrusive procedures. However, a new method developed by researchers at USC Viterbi School of Engineering offers a better way. By coupling a machine learning model with a patient's pulse data, they are able to measure a key risk factor for cardiovascular diseases and arterial stiffness, using just a smart phone.

Arterial stiffening, in which arteries become less elastic and more rigid, can result in increased blood and pulse pressure. In addition to being a known risk factor for cardiovascular diseases, it is also associated with diseases like diabetes and renal failure.

"If the aorta is stiff, then when it transfers the pulse energy all the way to the peripheral vasculature - to small vessels - it can cause end organ damage. So, if the kidneys are sitting at the end, the kidneys get hurt; if the brain is sitting at the end, the brain gets hurt," said Niema Pahlevan, assistant professor of aerospace and mechanical engineering and medicine.

Checking for a pulse

By measuring pulse wave velocity, which is the speed that the arterial pulse propagates through the circulatory system, clinicians are able to determine arterial stiffness. Current measurement methods include MRI, which is expensive and often not feasible, or tonometry, which requires two pressure measurements and an electrocardiogram to match the phases of the two pressure waves.

The novel method developed by Pahlevan, Marianne Razavi and Peyman Tavallali uses a single, uncalibrated carotid pressure wave that can be captured with a smart phone's camera. In a previous study, the team used the same technology to develop an iPhone app that can detect heart failure using the slight perturbations of your pulse beneath your skin to record a pulse wave. In the same fashion, they are able to determine arterial stiffness.

"An uncalibrated, single waveform - that means that you eliminated two steps. That's how you go from an $18,000 tonometry device and intrusive procedure to an iPhone app," Pahlevan said.

You Must Be Logged In To Post A Comment