dismiss

Clean Sweep Live Auction on Wed. May 1st. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Current Location:
>
>
> This Story

Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Molecular Imaging Homepage

NorthStar Medical closes $100 million financing with Oberland Capital to expand domestic Mo-99 radioisotope production capacity

Zionexa completes a second $5 million capital raise

SNMMI and ACR collaborate on clinical data registry for nuclear medicine

New PET imaging biomarker could better predict progression of Alzheimer's disease

MILabs installs new E-Class SPECT/CT system to enhance heart failure research at CHFC in Germany

Nordion and BRIT collaborate to bring cobalt-60 from India to global markets

Bruce Power completes harvest of Cobalt-60 that will save lives through cancer treatments

Nordion and Tong Xing expand cobalt-60 supply agreement

Advanced imaging technology predicts cardiovascular risk from inflammation detected in arteries

TRIUMF receives historic investment in 2019 federal budget

PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds

Press releases may be edited for formatting or style
Although relatively rare in the United States, and accounting for fewer than 5 percent of tuberculosis cases worldwide, TB of the brain—or tuberculosis meningitis (TBM)—is often deadly, always hard to treat, and a particular threat to young children. It may leave survivors with lifelong brain damage. Now, researchers at Johns Hopkins Medicine report they have used PET scans, a rabbit model and a specially tagged version of the TB drug rifampin to advance physicians’ understanding of this disease by showing precisely how little rifampin ever reaches the sites of TB infection in the brain.

“Really precise information has never been easy to come by for how much rifampin gets to any given patient where it’s needed,” says corresponding author Sanjay Jain, M.D., professor of pediatrics, radiology and international health at the Johns Hopkins University School of Medicine. “We’ve been able to use technology to find that long-needed information about this very troubling disease.”

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



Jain, along with lead authors Elizabeth Tucker, M.D., assistant professor of anesthesiology and critical care medicine, and Alvaro Ordonez, M.D., research associate, pediatric infectious diseases at the Johns Hopkins University School of Medicine, as well as other Johns Hopkins and University of Maryland colleagues, published their findings Dec. 5 in Science Translational Medicine.

Tuberculosis, which mostly infects the lungs, sickens more than 10 million people around the world each year, causes more than 1 million deaths and costs the global economy billions of dollars, according to the World Health Organization. TBM, caused when Mycobacterium tuberculosis infects brain tissue and the fluid surrounding the brain and spinal cord, is considered the most lethal and disabling form of TB. Children under the age of 5, and those with chronic diseases—notably diabetes and HIV—are mostly likely to develop TBM. Like all TB diseases, TBM is treated with a combination of drugs, including isoniazid, rifampin and pyrazinamide, taken for a year. However, even with treatment, over half of patients die or have significant neurological injury lasting a lifetime, especially young children.
In the new study, Johns Hopkins researchers engineered a version of rifampin with a charged particle—called a positron—attached to the drug ([11C]rifampin) that allowed them to follow its movement throughout the body using PET (positron emission tomography) scans.

Because TBM symptoms are similar among rabbits and humans, the researchers created an experimentally infected colony of rabbits with TBM, injected them with the tagged drug and tracked levels of the tagged [11C]rifampin throughout the rabbits’ brains over six weeks. PET scans revealed that after two weeks of treatment, the penetration of [11C]rifampin into TBM brain lesions significantly decreased, from 32 percent to only 11 percent of the levels of the drug noted in the blood. Significantly, they say, the decrease was not reflected in samples of cerebrospinal fluid (CSF) taken from the rabbits, despite that CSF is currently used as a standard proxy for determining drug and infection levels in people.
  Pages: 1 - 2 - 3 >>

Molecular Imaging Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED