SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Send us your Comments

Never Miss a Story

Sign up for email alerts

 

More Industry Headlines

Different initiatives, common goals: Varian and GE set sights on Africa's cancer problem Less than half of the countries in Africa offer access to radiotherapy

The rising rate of hospital shootings: What health care professionals need to know How can a hospital protect itself from shootings, and what should be done if a shooting occurs?

Cardiology: how smaller hospitals can provide top-level care Smaller hospitals have found new ways to provide quality care to patients

Is the Mo-99 shortage over? Nordion, MURR, General Atomics form production partnership The Sterigenics International subsidiary will focus on LEU Mo-99 production process

Olympus facing suits for infection and death of patients at UCLA Olympus Corp. of the Americas is facing suits for infections allegedly stemming from use of its duodenoscopes

DoD is homing in on a suitor for its $11 billion EHR contract Interested parties emphasize "fee for value" in selection process

Patient satisfaction little moved by fancy hospital design: study $200 billion spent on renovation projects, but is it worth it?

New Product Showcase This month's roundup of the latest industry products.

Young child is first fatality in Germany's measles outbreak Berlin has recorded more than 570 measles diagnoses since October

Toshiba to unveil Aquilion Lightning CT at ECR 2015 16-row helical CT with 0.5mm element for isotropic imaging

A new journal from
the American Association
for the Advancement
of Science

Scientists Make Mice Immune to Radiation

by Brendon Nafziger , DOTmed News Associate Editor
In a breakthrough that could change the lives of cancer victims, pilots and nuclear power plant workers, researchers might have found a way to protect cells from radiation damage.

In a study published in the new AAAS journal Science Translational Medicine (see video below), researchers at the University of Pittsburgh School of Medicine and the National Cancer Institute found that they could protect healthy cells from radiation injury by turning off an inhibitory pathway that regulates nitric oxide.

Story Continues Below Advertisement

Click here to learn more about McKesson's Enterprise Imaging solutions

Today, essential tools like Enterprise Image Repository, ClinicalData Exchange, quality workflow solutions and more are helping connect medical professionals across entire enterprises like never before. Find out more>>>



"[Nitric oxide] is a bio gas, produced by enzymes in cells, and flies around almost at light speed compared to other processes," Jeff Isenberg, M.D., a professor at Pitt's school of medicine, tells DOTmed News.

While nitric oxide mostly works to prevent clotting of arteries, it also appears to help animals survive stress conditions.

But Dr. Isenberg and his team made the discovery that by switching off a related inhibitory pathway that controls nitric oxide, they could give animals "near immunity to record levels of radiation," he says.

In mice, when Dr. Isenberg and his team introduced a drug that prevented a protein, thrombospondin-1, from binding to a surface cell receptor called CD47, the animals could endure almost unheard-of doses of radiation with virtually no ill effects.

In cellular studies, cells could withstand up to the tested amount: 60 Gy. And in whole animal studies, mice could endure the limit they were given: 40 Gy.

"Primarily, [on mice] people are using 5-10 Gy. This is off the scale from what they've published," he says.

Shockingly, the irradiated rodents were almost completely unharmed. Other than some mild hair loss at the site of dosage, there was almost no cell death or damage when histological samples were checked.

"There was no skin laceration or muscle loss," Dr. Isenberg says. "When we stained for cell death, we didn't even see significant loss of bone marrow, which is exquisitely sensitive...to radiation damage."

In comparison, control mice -- who didn't get the pathway-blocking treatment -- were eaten away with tissue loss and "frank necrosis of the limbs."

In fact, one reason Dr. Isenberg doesn't know the upper-limits of protection the drug confers to a whole animal is that ethics boards refuse to give permission to expose mice to much more than 40 Gy. (Whatever he gives to the treated mice -- who will be fine -- he has to give to the untreated mice, who will not.)

However, he says at some point radiation would damage tissue through thermal energy, which this process might not be able to stop.

Continue reading Scientists Make Mice Immune to Radiation...
  Pages: 1 - 2 >>

Related:


Interested in Medical Industry News? Subscribe to DOTmed's weekly news email and always be informed. Click here, it takes just 30 seconds.
Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Center
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2015 DOTmed.com, Inc.
ALL RIGHTS RESERVED