SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Send us your Comments

Never Miss a Story

Sign up for email alerts

 

More Industry Headlines

Federal government weighs in on antibiotic resistance Issues national strategy and calls for alternative treatments

A protein can speed up recovery after radiation and chemo Shows promise in animal experiments

Patient engagement solutions market expected to soar Will hit $13.7 billion by 2019

Big data platform designed for new value-based model Helps physicians improve outcomes while reducing costs

Hospitals saving billions on charity care ACA may save expansion state hospitals up to $4.2 billion in 2014

FDA approves GE's new PET/CT Higher sensitivity and field-of-view

Consensys joins forces with Oncology Services International A strategic alliance among ISOs

Checking in with the first installed MEVION S250 Assessing nine months of single room proton therapy

MEDICA 2014: IT Matters at MEDICA Health IT takes center stage at a number of presentations

Scripps' pencil-beam proton center had "exceptional results" Treated more tumor sites in seven months than others have

A new journal from
the American Association
for the Advancement
of Science

Scientists Make Mice Immune to Radiation

by Brendon Nafziger , DOTmed News Associate Editor
In a breakthrough that could change the lives of cancer victims, pilots and nuclear power plant workers, researchers might have found a way to protect cells from radiation damage.

In a study published in the new AAAS journal Science Translational Medicine (see video below), researchers at the University of Pittsburgh School of Medicine and the National Cancer Institute found that they could protect healthy cells from radiation injury by turning off an inhibitory pathway that regulates nitric oxide.

Story Continues Below Advertisement

Can a small footprint have a big impact in DR?

The Multix Select digital radiography (DR) system's floor mounting, table integrated generator & small footprint can accommodate even the smallest clinical setting while maintaining diagnostic confidence. Click for more info



"[Nitric oxide] is a bio gas, produced by enzymes in cells, and flies around almost at light speed compared to other processes," Jeff Isenberg, M.D., a professor at Pitt's school of medicine, tells DOTmed News.

While nitric oxide mostly works to prevent clotting of arteries, it also appears to help animals survive stress conditions.

But Dr. Isenberg and his team made the discovery that by switching off a related inhibitory pathway that controls nitric oxide, they could give animals "near immunity to record levels of radiation," he says.

In mice, when Dr. Isenberg and his team introduced a drug that prevented a protein, thrombospondin-1, from binding to a surface cell receptor called CD47, the animals could endure almost unheard-of doses of radiation with virtually no ill effects.

In cellular studies, cells could withstand up to the tested amount: 60 Gy. And in whole animal studies, mice could endure the limit they were given: 40 Gy.

"Primarily, [on mice] people are using 5-10 Gy. This is off the scale from what they've published," he says.

Shockingly, the irradiated rodents were almost completely unharmed. Other than some mild hair loss at the site of dosage, there was almost no cell death or damage when histological samples were checked.

"There was no skin laceration or muscle loss," Dr. Isenberg says. "When we stained for cell death, we didn't even see significant loss of bone marrow, which is exquisitely sensitive...to radiation damage."

In comparison, control mice -- who didn't get the pathway-blocking treatment -- were eaten away with tissue loss and "frank necrosis of the limbs."

In fact, one reason Dr. Isenberg doesn't know the upper-limits of protection the drug confers to a whole animal is that ethics boards refuse to give permission to expose mice to much more than 40 Gy. (Whatever he gives to the treated mice -- who will be fine -- he has to give to the untreated mice, who will not.)

However, he says at some point radiation would damage tissue through thermal energy, which this process might not be able to stop.

Continue reading Scientists Make Mice Immune to Radiation...
  Pages: 1 - 2 >>

Related:


Interested in Medical Industry News? Subscribe to DOTmed's weekly news email and always be informed. Click here, it takes just 30 seconds.
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2014 DOTmed.com, Inc.
ALL RIGHTS RESERVED