Over 450 Total Lots Up For Auction at Three Locations - CO 05/12, PA 05/15, NY 05/20

With stem cell bioengineering innovation, brain therapies for Parkinson's made possible

Press releases may be edited for formatting or style | March 17, 2016

The next step would be to further improve the scaffold biomaterials, allowing scientists to increase the number of implanted neurons in the brain. "The more neurons we can transplant, the more therapeutic benefits you can bring to the disease," Moghe said. "We want to try to stuff as many neurons as we can in as little space as we can."

The idea is to "create a very dense circuitry of neurons that is not only highly functioning but also better controlled," he said, adding that testing of mice with Parkinson's disease is underway to see if they improve or recover from the illness.

stats
DOTmed text ad

Your Trusted Source for Sony Medical Displays, Printers & More!

Ampronix, a Top Master Distributor for Sony Medical, provides Sales, Service & Exchanges for Sony Surgical Displays, Printers, & More. Rely on Us for Expert Support Tailored to Your Needs. Email info@ampronix.com or Call 949-273-8000 for Premier Pricing.

stats

Eventually, with continued progress, the researchers could perform studies in people. Moghe estimated that it would take 10 to 20 years to test the technology in humans.

Developing the scaffold technology and reprogramming the stem cells in the scaffolds was "very hard team work," he said. "It took many years to get here, so there was a lot of sweat and toil."

Aside from Moghe, study authors include: Aaron L. Carlson, Neal K. Bennett and Nicola L. Francis of the Rutgers Department of Biomedical Engineering; Apoorva Halikere of the Rutgers Department of Neuroscience and Cell Biology and the Child Health Institute of New Jersey at the Rutgers Robert Wood Johnson Medical School; Ronald P. Hart, Stephen Clarke and Kenneth Paradiso of the Department of Cell Biology and Neuroscience at Rutgers; Jennifer C. Moore of the Human Genetics Institute of New Jersey; Marius Wernig at the Stanford University School of Medicine in California; Joachim Kohn of the Rutgers Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials; and Zhiping P. Pang of the Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey at Rutgers Robert Wood Johnson Medical School.

Back to HCB News

You Must Be Logged In To Post A Comment