Researchers at Caltech in Pasadena, Calif., are working to coat the ChemoFilter membranes with DNA segments that can bind with specific drug molecules. "DNA could be great to remove a lot of different chemotherapy drugs," Hetts said.
The membranes could also be designed to capture antibiotics to treat potentially deadly infections from anthrax and other bacteria, and there are many applications in veterinary medicine, too, he said.

Ad Statistics
Times Displayed: 113086
Times Visited: 6738 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
Chen uses facilities at Berkeley Lab's Molecular Foundry to develop specialized polymers for ChemoFilter devices.
She also uses the Foundry's National Center for Electron Microscopy and conducts X-ray experiments at the lab's Advanced Light Source and SLAC National Accelerator Laboratory's Stanford Synchrotron Radiation Lightsource to study the nanostructure of the polymer materials she develops, and to better understand the drug-capture mechanism at microscopic scales and inform new designs.
"Without these awesome images from the Foundry and ALS, we wouldn't know how to optimize the performance of the materials," Chen said.
"We are actively searching for new materials and mechanisms" for the polymer membranes, she added. Researchers are exploring the use of 3-D-printed materials, for example, that can be coated with charged particles to attract and bind drug molecules.
A growth trend
Stephen Solomon, chief of Interventional Radiology Service at Memorial Sloan Kettering Cancer Center in New York, said the application of the TACE procedure has been increasing since the late '90s, and it has been shown to extend patient survival for those with liver cancer.
Solomon said he was familiar with the general concept of the ChemoFilter system: "One of the goals of any procedure involving chemotherapy is to minimize toxicity outside of the targeted organ, and the hope of this technology is to limit such toxicity."
Hetts said he looks forward to the development of more "cutting-edge" versions of ChemoFilter devices that are tailored to a wide range of treatments.
"This project has moved forward nicely and I'm really impressed," he said. "It's been a great experience in coming together to create these devices, and I'm looking forward to continuing it."
###
The Molecular Foundry, Advanced Light Source and Stanford Synchrotron Radiation Lightsource are DOE Office of Science User Facilities.
This work is supported by the DOE Office of Science and the National Institutes of Health.
Learn more about the work conducted by Nitash Balsara's research group: http://www.cchem.berkeley.edu/npbgrp/.