Over 100 Massachusetts Auctions End Today - Bid Now
Over 1750 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/02, TX 05/03, TX 05/06, NJ 05/08, WA 05/09

Chemists devise revolutionary 3-D bone-scanning technique

Press releases may be edited for formatting or style | September 09, 2016 X-Ray

He continued: "By using our new nanoagent to label microcracks and detecting them with magnetic resonance imaging (MRI), we hope to measure both bone quantity and quality and identify those at greatest risk of fracture and institute appropriate therapy. Diagnosing weak bones before they break should therefore reduce the need for operations and implants - prevention is better than cure."

In addition to the unprecedented resolution of this imaging technique, another major step forward lies in it not exposing X-rays to patients. X-rays emit radiation and have, in some cases, been associated with an increased risk of cancer. The red emitting gold-based nanoagents used in this alternative technique are biologically safe - gold has been used safely by medics in a variety of ways in the body for some time.

Dr Esther Surender, Trinity, said: "These nanoagents have great potential for clinical application. Firstly, by using gold nanoparticles, we were able to lower the overall concentration of the agent that would have to be administered within the body, which is ideal from a clinical perspective. Secondly, by using what is called 'two-photon excitation' we were able to image bone structure using long wavelength excitation, which is not harmful or damaging to biological tissues."

She added: "These nanoagents are similar to the contrast agents that are currently being utilised for MRI within the clinic, and hence have the potential to provide a novel means of medical bone diagnosis in the future. Specifically, by replacing the Europium with its sister ion Gadolinium, we can tune into the MRI activity of these nanoagents for future use alongside X-ray and computed tomography (CT) scans."

Professor Gunnlaugsson and his research team are based in the Trinity Biomedical Sciences Institute (TBSI), which recently celebrated its 5-Year anniversary. Professor Gunnlaugsson presented his research at a symposium to mark the occasion, along with many other world-leaders in chemistry, immunology, bioengineering and cancer biology.

Back to HCB News

You Must Be Logged In To Post A Comment