Airan, who was doing his fellowship and residency at The Johns Hopkins Hospital during the study, says that one of the most promising, immediate applications of the new technology could be for the “brain mapping” required before many neurosurgeries. Before a surgeon cuts into the brain to remove a tumor, for example, he or she needs to know where not to cut. “Currently, that requires keeping the patient awake, while the surgeon exposes the brain and probes it with electrodes while assessing responses. The ultrasound method would allow us to use a drug like propofol to briefly ‘turn off’ specific areas of the brain one at a time, prior to the surgery, with nothing more invasive than a needle stick,” he says.
Because ultrasound, MRI and each component of the nanoparticles have been approved for other uses in humans, the researchers expect a short timeline to get their idea to patients, but they acknowledge that its applications will be somewhat limited by the cost and accessibility of MRI scans — at least in the short term.

Ad Statistics
Times Displayed: 22281
Times Visited: 445 Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money
“Our current model requires real-time imaging of the brain while the ultrasound is being applied,” says Airan. “Based on similar procedures I already do, that could cost up to $30,000 to $50,000. But we’re working on software that would allow us to synchronize a single MRI image with the ultrasound guidance system to decrease the cost significantly.”
Meanwhile, the researchers believe it will still be clinically relevant in many situations where a drug’s effects are known to last for weeks. They also expect it to be widely used in brain research to study and manipulate the function of specific areas of the brain in a controlled manner.
Other authors of the report include Randall Meyer, Nicholas Ellens, Kelly Rhodes, Keyvan Farahani, Martin Pomper and Shilpa Kadam of the Johns Hopkins University School of Medicine; Pomper is also a member of the Kimmel Cancer Center and the Institute for Nanobiotechnology, and Farahani is also part of the National Cancer Institute.
This work was supported by grants from the National Institute of Biomedical Imaging and Bioengineering (R01EB016721, R01EB022148), the National Institute of Child Health and Human Development (R21HD073105), the National Cancer Institute (F31CA214147, P50CA058236), Philips Inc., the Foundation of the American Society for Neuroradiology, the National Science Foundation Graduate Research Fellowship Program (DGE-1232825), Achievement Rewards for College Scientists, and the Walter and Mary Ciceric Foundation.
Back to HCB News