Over 300 Colorado Auctions End Today - Bid Now
Over 150 Total Lots Up For Auction at Two Locations - PA 05/15, NY 05/20

Study shows nanodiamond-enhanced MR offers greater range of diagnostic and therapeutic applications

Press releases may be edited for formatting or style | April 26, 2017 MRI

In the present study, the researchers show that they could achieve nanodiamond-enhanced MRI by taking advantage of a phenomenon known as the Overhauser effect to boost the inherently weak magnetic resonance signal of diamond through a process called hyperpolarization, in which nuclei are aligned inside a diamond so they create a signal detectable by an MRI scanner. The conventional approach to hyperpolarization uses solid-state physics techniques at cryogenic temperatures, but the signal boost doesn't last very long and is nearly gone by the time the nanoparticle compound is injected into the body. By combining the Overhauser effect with advances in ultra-low-field MRI coming out of the Martinos Center, the researchers were able to overcome this limitation - thus paving the way for high-contrast in vivo nanodiamond imaging over indefinitely long periods of time.

High-performance ultra-low-field MRI is itself a relatively new technology, first reported in Scientific Reports in 2015 by Rosen and Martinos Center colleagues. "Thanks to innovative engineering, acquisition strategies and signal processing, the technology offers heretofore unattainable speed and resolution in the ultra-low-field MRI regime," says Rosen, director of the Low-Field Imaging Laboratory, an assistant professor of Radiology at Harvard Medical School and the senior author of the current paper. "And importantly, by removing the need for massive, cryogen-cooled superconducting magnets, it opens up a number of new opportunities, including the nanodiamond imaging technique we've just described."

stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats

The researchers have noted several possible applications for their new approach to nanodiamond-enhanced MRI. These include the accurate detection of lymph node tumors, which can aid in the treatment of metastatic prostate cancer, and exploring the permeability of the blood-brain barrier, which can play an important role in the management of ischemic stroke. Because it provides a measurable MR signal for periods of over a month, the technique could benefit applications such as monitoring the response to therapy.

Included in treatment monitoring are applications in the burgeoning field of personalized medicine. "The delivery of highly specific drugs is strongly correlated with successful patient outcomes," says Waddington, who was honored with the Journal of Magnetic Resonance Young Scientist Award at the 2016 Experimental NMR Conference in recognition of this work. "However, the response to such drugs often varies significantly on an individual basis. The ability to image and track the delivery of these nanodiamond-drug compounds would, therefore, be greatly advantageous to the development of personalized treatments."

The researchers continue to explore the potential of the technique and are now planning a detailed study of the approach in an animal model, while also investigating the behavior of different nanodiamond-drug complexes and imaging them with the new capability.

Back to HCB News

You Must Be Logged In To Post A Comment