Over 40 Florida Auctions End Today - Bid Now
Visit DOTmed at RSNA 2024 - Booth #6804

The rat race is over: New livestock model for stroke could speed discovery

Press releases may be edited for formatting or style | September 26, 2017 Cardiology

"The takeaway from this work is that the injected stem cells led to cellular and tissue improvement," West said. "Basically, if you have a stroke and you get this treatment, fewer neurons are going to die, and for stroke research that's critically important."

The findings from the study, published in Nature's Scientific Reports, suggest that there are peripherals of salvageable brain tissue that would benefit from cell-based restorative therapies after acute ischemic stroke. Specifically, iNSCs that naturally promote brain plasticity and recovery.

In collaboration with Emory University and UGA's College of Veterinary Medicine, the team's work shows improved recovery in white matter, the "superhighways of connectivity" that connect key centers of the brain. This change in response to restorative therapy can be monitored using MRI imaging techniques.

"From the MRI we learned of a recovery mechanism in that neural stem cell therapy improves white matter integrity," said Baker. "We now have white matter tracts that allows for faster, more effective communication from one region in the brain to another after injury."

The research marks a major milestone and, while a long way from clinical use, it may speed stroke discoveries by providing a better, more predictive translational model. Researchers within the RBC are already using this model as a platform for future nanotechnology applications.

"If we can replace lost brain tissue and neural systems that are basically gone from stroke, which would lead to functional improvement or functional independence like feeding yourself, getting yourself dressed and being able to move again, then we've met our long-term goals-but in the bigger picture what we've done is improve the quality of life," said West.

The study, "Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Enhances Recovery in an Ischemic Stroke Pig Model," is available online at https://www.nature.com/articles/s41598-017-10406-x

The Regenerative Bioscience Center at the University of Georgia links researchers and resources collaborating in a wide range of disciplines to develop new cures for devastating diseases that affect animals and people. With its potential restorative powers, regenerative medicine could offer new ways of treating diseases for which there are currently no treatments-including heart disease, Parkinson's, Alzheimer's and stroke.

SOURCE: University of Georgia

Back to HCB News

You Must Be Logged In To Post A Comment