"We started by learning how to build cardiac myocytes, then cardiac tissues, then muscular pumps in the form of marine organism mimics, and now a ventricle," said Parker. "Along the way we have elucidated some of the fundamental design laws of muscular pumps and developed ideas about how to fix the heart when these laws are broken by disease. We have a long way to go to build a four-chamber heart but our progress is accelerating."
The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

Ad Statistics
Times Displayed: 62296
Times Visited: 2040 Ampronix, a Top Master Distributor for Sony Medical, provides Sales, Service & Exchanges for Sony Surgical Displays, Printers, & More. Rely on Us for Expert Support Tailored to Your Needs. Email info@ampronix.com or Call 949-273-8000 for Premier Pricing.
This research was co-authored by Sean P. Sheehy, Christophe O. Chantre, John F. Zimmerman, Francesco S. Pasqualini, Xujie Liu, Josue A. Goss, Patrick H. Campbell, Grant M. Gonzalez, Sung-Jin Park, Andrew K. Capulli, John P. Ferrier, T. Fettah Kosar, and L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, of Organismic and Evolutionary Biology, and of Physics.
This work was sponsored by the Harvard John A. Paulson School of Engineering and Applied Sciences at Harvard University, the Wyss Institute for Biologically Inspired Engineering at Harvard University, Harvard Materials Research Science and Engineering Center, Defense Threat Reduction Agency (DTRA) subcontract from Los Alamos National Laboratory and the National Center for Advancing Translational Sciences of the National Institutes of Health.
Back to HCB News