Over 300 Colorado Auctions End Tomorrow 05/12 - Bid Now
Over 150 Total Lots Up For Auction at Two Locations - PA 05/15, NY 05/20

Cancer tissue-freezing approach may help more breast cancer patients in lower income countries

Press releases may be edited for formatting or style | July 15, 2019 Women's Health

Current cryoablation technologies, however, are too expensive, with a single treatment costing upwards of $10,000, and are dependent on argon gas, which typically isn't available in lower-income countries, to form the tissue-killing ice crystals.

With these barriers in mind, the student-led research team, named Kubanda (which means "cold" in Zulu), wanted to create a tissue-freezing tool that uses carbon dioxide, which is already widely available in most rural areas thanks to the popularity of carbonated drinks.

stats Advertisement
DOTmed text ad

Training and education based on your needs

Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money

stats

The research team tested their tool in three experiments to ensure it could remain cold enough in conditions similar to the human breast and successfully kill tumor tissue.

In the first experiment, the team used the tool on jars of ultrasound gel, which thermodynamically mimics human breast tissue, to determine whether it could successfully reach standard freezing temperatures killing tissue and form consistent iceballs. In all trials, the device formed large enough iceballs and reached temperatures below -40 degrees Celsius, which meets standard freezing temperatures for tissue death for similar devices in the United States.

For the second experiment, the team treated 9 rats with 10 mammary tumors. Afterwards, they looked at the tissue under a microscope and confirmed that the tool successfully killed 85% or more tissue for all tumors.

Finally, the team tested the tool's ability to reach temperatures cold enough for tissue destruction in the normal liver of a pig, which has a temperature similar to a human breast. The device was successfully able to stay cold enough during the entire experiment to kill the target tissue.

"When we started the project, experts in the area told us it was impossible to ablate meaningful tissue volumes with carbon dioxide. This mindset may have come from both the momentum of the field and also from not thinking about the importance of driving down the cost of this treatment," says Durr.

While the results are promising, the device still requires additional experiments before it's ready for commercial use. Mainly, the research team's next steps are to ensure it can consistently kill cancer tissue under the same heat conditions as human breast tissue.

In the near future, the team hopes to continue testing their device for human use, and expand its use to pets.


Other authors on this paper include Sean Young, Yixin Hu, Guannan Wang, Evelyn McChesney, Grace Kuroki, Pascal Acree, Serena Thomas, Tara Blair, Shivam Rastogi, Dara L. Kraitchman, Clifford Weiss, Saraswati Sukumar and Susan C. Harvey, all of Johns Hopkins.

Back to HCB News

You Must Be Logged In To Post A Comment