Over 1150 Total Lots Up For Auction at Three Locations - WI 07/09, NJ Cleansweep 07/10, CA 07/11

Fujitsu and University of Toronto develop quantum-inspired technology to optimize radiation treatment plans for brain tumors

Press releases may be edited for formatting or style | February 26, 2021 Alzheimers/Neurology Rad Oncology

Recent years have witnessed the emergence of new tools to help ease this process--for instance, software that automates the generation of treatment plans. In the field, however, it often remains the case that the generated plan still requires clinicians to manually modify and adjust the plans.

Since 2017, Fujitsu and U of T have been collaborating in a strategic partnership centered on research relating to quantum computing. With this latest initiative, the parties have collaborated in the development of technology to help apply the use of the Digital Annealer for the generation of treatment plans for Gamma Knife therapies. Researchers at U of T and its medical institutions studied and developed methods to translate the Gamma Knife optimization to combinatorial optimization, a format understandable by the Digital Annealer technology developed by Fujitsu.

stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats

About the Newly Developed Technology

U of T researchers, through their methods and the use of Digital Annealer technology by Fujitsu, has developed the following technology to generate treatment plans at high speed while maintaining the same accuracy as treatment plans created by experienced doctors.

1. Using the physical properties of the human body (Dose Profile), the shot shape during gamma irradiation is modeled.

In the past, shots (Concentrated area of gamma rays) formed by multiple gamma rays were assumed to be perfectly spherical during the shot position determination process. However, it has been found that the sphere is not necessarily perfect due to the influence of moisture in the human body. The newly developed technology determines the position of shots utilizing shot shapes reflecting the physical characteristics of gamma rays in the human body. This can contribute to the generation of more accurate treatment plans.

2. Optimization of radiation parameters using the Digital Annealer

In the past, during shot position determination process, multiple gamma ray radiation positions (Position of the shot) were determined sequentially; the position of the first shot was determined and the position of the second shot was determined after that so as to include the remaining part of the affected tissue as much as possible. However, this may not result to the optimal number of shots or positions. By contrast, the Digital Annealer allows users to search for the positions of all shots simultaneously at the beginning, resulting in a more accurate overall optimized treatment plan. It is also possible to obtain an optimized solution for the parameters of the radiation shape, enabling the rapid generation of a treatment plan that optimizes dosage for each patient.

You Must Be Logged In To Post A Comment