Over 30 Total Lots Up For Auction at Two Locations - WI 05/27, NV 05/29

World’s smallest microelectronic catheter for minimally invasive surgery of the future

Press releases may be edited for formatting or style | December 23, 2021 Cardiology Operating Room

The research team reports on the World’s smallest Microelectronic Catheter in a publication entitled "Electronically integrated microcatheters based on self-assembling polymer films" in the current issue of the prestigious journal Science Advances.

Flexible and equipped for diverse applications: New applications for minimally invasive surgery

stats
DOTmed text ad

Your Trusted Source for Sony Medical Displays, Printers & More!

Ampronix, a Top Master Distributor for Sony Medical, provides Sales, Service & Exchanges for Sony Surgical Displays, Printers, & More. Rely on Us for Expert Support Tailored to Your Needs. Email info@ampronix.com or Call 949-273-8000 for Premier Pricing.

stats

Prof. Schmidt and his team integrated magnetic sensors for navigation and positioning into the micro-catheter. Like a compass, this tracking relies on weak magnetic fields instead of harmful radiation or contrast agents, and would thus be applicable in deep tissue and under dense materials such as skull bones.

The microelectronic microcatheter integrates a channel for fluids. Through this microfluidic system drugs or liquid embolic agents could be delivered directly to the point of use. The catheter tip is equipped with a tiny gripping instrument that allows the catheter to grasp and move microscopic objects. The removal of minute tissue samples or blood clots are suggested as potential applications. This highly flexible use of embedded microelectronics is made possible by integrated electronic components based on the Swiss-Roll Origami Technology. By this technology the team can construct highly complex microelectronic sensor and actuator circuits on a chip, which are then triggered to roll up by themselves into a Swiss-Roll microtube structure. The multiple windings of the Swiss-Roll architecture significantly increase the usable surface area and monolithically integrate sensors, actuators and microelectronics into the compact wall of the tubular microcatheter.

Prof. Schmidt and his team have pioneered this technology for some time. Extremely thin, shapeable polymer films have proven useful for a microtube architecture that can geometrically adapt to other objects, for example, cuff implants as bioneural interfaces. Another application scenario targeted by this technology are catalytic micromotors and platforms for electronic components to create microelectronic swimming robots.

The microelectronic microcatheter bridges the gap between electronically enhanced instruments and the size requirements of vascular interventions in submillimeter anatomies. In the future, additional sensor functions can be integrated, expanding the range of potential applications. For example, sensors for blood gas analysis, biomolecule detection, and sensing physiological parameters such as pH, temperature, and blood pressure are conceivable. Entirely new and flexible applications for minimally invasive surgery are coming into the realm of possibilities.

You Must Be Logged In To Post A Comment