Over 1650 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12, PA 05/15

Ten biggest nuclear medicine stories of 2022 (so far)

June 10, 2022
Molecular Imaging
From the June 2022 issue of HealthCare Business News magazine

New method eliminates uranium and waste from medical isotope production
Belgian and Dutch researchers announced in April that they developed a new method for producing medical radioisotopes without the use of enriched uranium.

Using electron accelerators, the scientists can apply an electron beam at energy densities several orders of magnitude higher than that of the sun’s core to isotopes. The isotopes break down into radioisotopes with little long-lived radioactive waste left over, according to Physics World.
stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats
Developing this technique is the SMART project, an international collaboration made up of the Belgian Institute of Radio Elements (IRE) and Dutch companies Demcon and ASML. They say that using this alternative approach will relieve dependency on nuclear reactors, with several aging and unable to keep up with demand.

The idea is based on the use of accelerated electron beams to generate extreme ultraviolet light for lithography applications. The SMART project is scaling up the technology for large-scale radioisotope production and upon achieving certain milestones, aims to create a commercial production facility.

To start, it will use its technique to convert non-radioactive molybdenum-100 (Mo-100) into molybdenum-99 (Mo-99), the nuclear parent of Technetium-99m (Tc-99m). Tc-99m is the most commonly used medical radioisotope in the world and part of tens of millions of procedures annually to diagnose heart disease, cancer and other diseases. The researchers recently showed that their Mo-100 target could withstand prolonged exposure to the extreme intensity of the irradiation.

Using the ELBE superconducting electron accelerator at the German research lab, Helmholtz Zentrum Dresden-Rossendorf, they performed the tests on a 1:1000 scale, compared with the intended size for Mo-99 production. The power density deposited in the target is nine orders of magnitude higher than that of the sun’s core. This places the radiation environment on par with a reactor vessel wall in a nuclear plant for over 10 years.

You Must Be Logged In To Post A Comment