Thanks to the development of an MRI-compatible microrobot injector, the scientists were able to assemble “particle trains”, aggregates of magnetizable microrobots. As these have a greater magnetic force, they are easier to pilot and detect on the images provided by the MRI device.
In this way, the scientists can ensure not only that the train is going in the right direction, but also that the treatment dose is adequate. Over time, each microrobot will carry a portion of the treatment to be delivered, so it’s essential that radiologists know how many there are.

Ad Statistics
Times Displayed: 2839
Times Visited: 27 Fast-moving cardiac structures have a big impact on imaging. Fujifilm’s SCENARIA View premium performance CT brings solutions to address motion in Coronary CTA while delivering unique dose saving and workflow increasing benefits.
A good sense of direction
“We carried out trials on twelve pigs in order to replicate, as closely as possible, the patient’s anatomical conditions,” said Soulez. “This proved conclusive: the microrobots preferentially navigated the branches of the hepatic artery which were targeted by the algorithm and reached their destination.”
His team made sure that the location of the tumour in different parts of the liver did not influence the effectiveness of such an approach.
“Using an anatomical atlas of human livers, we were able to simulate the piloting of microrobots on 19 patients treated with transarterial chemoembolization,” he said. “They had a total of thirty tumours in different locations in their livers. In more than 95 per cent of cases, the location of the tumour was compatible with the navigation algorithm to reach the targeted tumour.”
Despite this scientific progress, clinical application of this technology is still a long way off.
“First of all, using artificial intelligence, we need to optimize real-time navigation of the microrobots by detecting their location in the liver and also the occurrence of blockages in the hepatic artery branches feeding the tumour,” said Soulez.
Scientists will also need to model blood flow, patient positioning and magnetic field direction using software that simulates the flow of fluids through the vessels. This will make it possible to assess the impact of these parameters on the transport of the microrobots to the target tumour, thus improving the accuracy of the approach.
According to the Canadian Cancer Society, 4,700 Canadians were diagnosed with liver or intrahepatic bile duct cancer in 2023.
About this study
“Human-scale navigation of magnetic microrobots in hepatic arteries,” by Ning Li under the supervision of Gilles Soulez and his colleagues, was published online on Feb. 14, 2024, in the journal Science Robotics. The study received funding mainly from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Quebec Health Research Fund, the Quebec Radiological Foundation, the National Natural Science Foundation of China, the Shanghai High-end Foreign Expert Project, and the Shanghai Rising-Star Program.
Back to HCB News