Over 1650 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12, PA 05/15

3-D Miniature Endoscope
Opens New Diagnostic Possibilities

by Barbara Kram, Editor | October 24, 2006
Endoscopy

"This new technology will offer physicians and surgeons the capability to bring many more procedures into outpatient settings, reduce anesthesia requirements and minimize tissue damage," Tearney adds. "The device's size and flexibility should allow safer navigation through such delicate structures as the salivary ducts, the fallopian tubes and the pancreatic duct. Fetal and pediatric procedures may also benefit from this tool. Eventually, SEE could give rise to new procedures that permit diagnosis and microsurgery in previously inaccessible areas of the body."

The spectral encoded miniature endoscope uses micro optics and a single optical fiber to project various colors of light onto different portions of the subject. The light reflected back into the endoscope is measured and analyzed to produce a three-dimensional image. This illustration shows a time exposure of white light transmitted through the miniature endoscope, superimposed on a three-dimensional rendering of mouse metastatic ovarian tumor nodules obtained with this new technique.

stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats

Tearney is an associate professor of Pathology at Harvard Medical School. He and his colleagues are working on adapting the SEE device for human studies in the near future. Additional co-authors of the Nature report are Imran Rizvi, Matthew White, MD, Jason Motz, PhD, Tayyaba Hasan, PhD, and Brett Bouma, PhD - all of the Wellman Center. The research was supported by grants from the Center for the Integration of Medicine and Innovative Technology, the National Science Foundation and the Whitaker Foundation.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, transplantation biology and photomedicine. MGH and Brigham and Women's Hospital are founding members of Partners HealthCare HealthCare System, a Boston-based integrated health care delivery system.

Full Caption:
The spectral encoded miniature endoscope uses micro optics and a single optical fiber to project various colors of light onto different portions of the subject. The light reflected back into the endoscope is measured and analyzed to produce a three-dimensional image. This illustration shows a time exposure of white light transmitted through the miniature endoscope, superimposed on a three-dimensional rendering of mouse metastatic ovarian tumor nodules obtained with this new technique.

Back to HCB News