by
Barbara Kram, Editor | January 09, 2007
The two studies used FACBC with positron emission tomography (PET) and PET with computed tomography (PET/CT), both standard imaging tools that can be
used to pinpoint diseases in the body. When PET is used to image cancer, a
radiotracer is injected into a patient, and it is drawn in higher concentrations to cancerous areas. The highly sensitive PET scan picks up the metabolic signal of actively growing cancer cells. The CT scan generates a detailed picture of internal anatomy, locating and revealing the size and shape of abnormal cancer growths. When these two results are fused together, the functional data from the PET imaging are correlated with anatomy on the CT images to provide a single detailed and informative image.

Ad Statistics
Times Displayed: 1581
Times Visited: 8 Keep biomedical devices ready to go, so care teams can be ready to care for patients. GE HealthCare’s ReadySee™ helps overcome frustrations due to lack of network and device visibility, manual troubleshooting, and downtime.
Tracers-such as 18F-FDG, 11C-choline, 11C-acetate and others-are currently used for diagnosing prostate cancer, said Shuntaro Oka, veterinarian and an assistant research associate at Nihon Medi-Physics. In Oka's in vitro and in vivo study, FACBC had a high accumulation in cancer cells, small excretion into the bladder and a low accumulation in areas of inflammation, indicating that it could possibly "overcome drawbacks of some traditional PET tracers," he noted. "It is not unusual that the results of experiments lose touch with the results of clinical study; however, this time, the results of our basic studies correlated well with Dr. Schuster's findings in patients with prostate cancer," said Oka. "This is good news for development of our compounds," he added, indicating clinical PET is not generally accepted in Japan; he hoped that FACBC could become "an agent to enhance the health and quality of life of patients."
Oka said the two research studies were definite examples of molecular imaging, a technique to visualize the activity of molecules in the body. PET showed the activity of amino acid transporters that "mediate" FACBC, the radiotracer that was developed in Mark M. Goodman's lab at Emory University, into prostate cancer. " 'Hot spots' on FACBC PET indicate the location of the amino acid transporters in target tissue and the site's increased activity of the amino acid transporters," said Oka. Schuster indicated that the research was conducted with individuals representing "a panoply of clinical knowledge" from
Emory Healthcare and Winship Cancer Institute of Emory University, Emory University, the Atlanta VA Hospital and Nihon.
The American and Japanese collaborative research appears in the January issue of the Journal of Nuclear Medicine, which is published by SNM, the largest molecular imaging and nuclear medicine association. Authors of "Initial Experience With the Radiotracer Anti 1-Amino-3-[18F]Fluorocyclobutane-1-Carboxylic Acid (Anti-[18F]FACBC) With PET/CT in Prostate Carcinoma" are David M Schuster, John R Votaw, Weiping Yu, Jonathon A Nye and Mark M. Goodman, Radiology Department, Division of Nuclear Medicine; Peter T Nieh, Viraj Master and Muta M. Issa, Urology Department; and F. DuBois Bowman, Biostatistics Department, all at Emory University in Atlanta, Ga.