Over 150 Total Lots Up For Auction at One Location - CA 06/06

MR guidance shows promise in delivering stem cell therapies

Press releases may be edited for formatting or style | September 15, 2016 MRI
September 14, 2016, Johns Hopkins Medicine -- Working with animals, a team of scientists reports it has delivered stem cells to the brain with unprecedented precision by threading a catheter through an artery and infusing the cells under real-time MRI guidance.

In a description of the work, published online Sept. 12 in the Journal of Cerebral Blood Flow and Metabolism, they express hope that the tests in anesthetized dogs and pigs are a step toward human trials of a technique to treat Parkinson’s disease, stroke, and other brain damaging disorders.

“Although stem cell-based therapies seem very promising, we’ve seen many clinical trials fail. In our view, what’s needed are tools to precisely target and deliver stem cells to larger areas of the brain,” says Piotr Walczak, M.D., Ph.D., associate professor of radiology at the Johns Hopkins University School of Medicine’s Institute for Cell Engineering. The therapeutic promise of human stem cells is derived from their ability to develop into any kind of cell and, in theory, regenerate injured or diseased tissues ranging from the insulin-making islet cells of the pancreas that are lost in type 1 diabetes to the dopamine-producing brain cells that die off in Parkinson’s disease.
stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats
Ten years ago, Shinya Yamanaka’s research group in Japan raised hopes further when it developed a technique for “resetting” mature cells, such as skin cells, to become so-called induced pluripotent stem cells. That gave researchers an alternative to embryonic stem cells that could allow the creation of therapeutic stem cells that matched the genetic makeup of each patient, greatly reducing the chances of cell rejection after they were infused or transplanted. But while induced pluripotent stem cells have enabled great strides forward in research, Walczak says they are not yet approved for any treatment, and barriers to success remain.

In a bid to address once such barrier – how to get the cells exactly where needed and no place else – Walczak and his colleague Miroslaw Janowski, M.D., Ph.D., assistant professor of radiology, sought a way around strategies that require physicians to puncture patients’ skulls or inject them intravenously. The former, Walczak says, is not only unpleasant, but also only allows delivery of stem cells to one limited place in the brain. In contrast, injecting cells intravenously scatters the cells throughout the body, with few likely to land where they’re most needed, says Walczak.

“Our idea was to do something in between,” says Janowski, using intra-arterial injection, which involves threading a catheter, or hollow tube, into a blood vessel, usually in a leg, and guiding it to a vessel in a hard-to-reach spot like the brain. The technique currently is used mainly to repair large vessels in the brain, says Janowski, but the research team hoped it might also be used to get stem cells to the exact place where they were needed. To do that, they would need a way of monitoring the catheter placement and movement of implanted cells in real time.

You Must Be Logged In To Post A Comment