Over 250 New Jersey Auctions End Tomorrow 09/26 - Bid Now
Over 60 Total Lots Up For Auction at One Location - CA 10/05

MGH neurosurgeon works to develop the first blood-based test for patients with brain tumors

Press releases may be edited for formatting or style | October 11, 2016 Rad Oncology
During his residency, Mass General neurosurgeon Brian Nahed, MD, MSC, became intrigued by the emerging promise of a blood-based test for cancer. To pursue it, he completed a post-doctoral fellowship in the lab of Daniel Haber, Director of the Mass General Cancer Center, and Shyamala Maheswaran, PhD, who had developed the first microfluidic device to detect circulating tumor cells (CTCs) shed from a tumor into the blood stream.

The idea was of particular interest to Nahed because distinguishing brain tumor recurrence from changes that occur from radiation therapy can be difficult using modern imaging tools. Some patients must undergo a brain biopsy for a clear diagnosis. The ability to provide clinicians with a more definitive test to identify the recurrence of a tumor using a blood test rather than brain surgery had strong appeal.

Yet the promise of this new technology was uncertain. Brain cancer rarely metastasizes outside of the brain and previous attempts by others had failed to find CTCs in brain tumor patients. The blood-brain barrier has been known to limit what comes in and out of the brain, so the idea of developing a blood-based diagnostic tool for brain cancer was seen by many as a non-starter. “It was a pretty high risk, high reward project,” says Nahed.

The scales have recently begun to tip towards high reward, however. Nahed, along with co-principle investigator Shannon Stott, PhD, a bioengineer at the Center for Cancer Research at Mass General, have developed the first device that detects both glioblastoma CTCs and smaller tumor products called exosomes that contain information about the tumor and its genetic makeup in patients. “My hope is that our test will diagnose brain tumors, detect mutations, monitor for recurrence and differentiate it from normal reaction to treatment — all through a routine blood test,” says Nahed. “That’s the reward.”

Nahed’s first task in realizing this vision was to show, unequivocally, that CTCs could be detected in glioblastoma patients. In an effort to capture as many CTCs as possible, Nahed devised a cocktail of five antibodies to select glioblastoma cells from other cells in the blood stream. “It was difficult because this is a really heterogeneous tumor and it’s in the blood at low levels,” he says.

Using the test, Nahed, Dr. James Sullivan, and his team successfully identified the first evidence of circulating tumor cells in the blood of patients with glioblastoma. They also performed molecular analysis of these cells, something that could previously be done only on brain tumor tissue samples.

You Must Be Logged In To Post A Comment