Pericytes are the primary locus of matrix-mellaproteinase-9-dependent (MMP-9) capillary damage and blood leakage during ischemia, according to preclinical findings reported by Medical University of South Carolina (MUSC) investigators in an article published online on November 14, 2016 by The Journal of Neuroscience. In vivo two-photon microscopy revealed MMP-9 activity and plasma leakage disproportionately occurred at locations where pericyte somata were attached to the endothelium. These results suggest that pericytes, normally essential for blood-brain barrier (BBB) function, contribute to capillary damage during stroke.
The BBB--a highly specialized vascular structure--prevents the entry of blood-borne substances that can harm the brain (e.g., neurotransmitters such as glutamate, clotting factors such as fibrin, and free radical-generating substances such as iron). During ischemic stroke and related cerebrovascular diseases, the BBB is damaged, allowing incursion of blood plasma that injures neurons and other structures essential for normal cerebral function.
The role of pericytes as builders and custodians of the BBB is well recognized, but how pericytes respond to blood flow loss in the adult brain has largely been a mystery, until now.

Ad Statistics
Times Displayed: 22281
Times Visited: 445 Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money
MUSC researchers recently harnessed cutting-edge technology to image pericytes in the intact brains of live mice and to spatially and temporally track the proteolytic enzyme, MMP-9, as the BBB degraded and blood began leaking into the brain.
Findings from this novel study not only provide critical new information about pericytes as a potent source of MMP-9 during BBB leakage but also open new discovery pathways for future therapies in neurological conditions involving ischemia.
It all began when Robert Underly, a Ph.D .candidate in the MUSC College of Graduate Studies Neuroscience Program and first author on the article, noticed that, when a laser was used to induce ischemic strokes in the laboratory, BBB leakage occurred at very specific sites along the capillaries.
"I'd assumed that blood leakage occurred along the entire capillary length," said Underly. "But it wasn't like that. There were hot spots that leaked first and more than the rest of the capillary bed. That was really unexpected."
Andy Y. Shih, Ph.D., Assistant Professor of Neurosciences and senior author on the article, and his team followed up on Underly's observation. "We found a very close association between where the round cell bodies of pericytes were located and where the leaks occurred," said Shih. "So that was our first clue that the pericytes were possibly doing something harmful in the early stages of an ischemic stroke."