Over 150 New York Auctions End Today - Bid Now

A fine-tuned microscopy technique offers breakthrough imaging of melanoma

Press releases may be edited for formatting or style | March 01, 2017 Rad Oncology
SAN DIEGO -- Melanoma is the deadliest form of skin cancer, with over 232,000 new cases and 55,000 deaths per year worldwide. Those with light-skin or red hair are often prone to hard-to-detect melanomas, often caused by properties of pigments within skin called melanins. People with fair skin have a higher concentration of the melanin known as pheomelanin in their skin, and a corresponding higher probability of developing melanoma -- in particular, a difficult-to-detect subtype known as amelanotic melanoma. In high concentrations, pheomelanin is responsible for the orange-reddishness in hair, but is essentially invisible in skin.

While eumelanin, the brown-black pigment found in most melanomas, can be easily seen, the light colored pheomelanin is difficult to detect; even with advances in modern microscopy, understanding the pheomelanin molecule and its role in melanoma has eluded scientists.

Recently, researchers at Massachusetts General Hospital's Wellman Center for Photomedicine have made a breakthrough for spotting and studying this elusive molecule in skin. Sam Osseiran, a scientist on the team lead by Harvard University professor Conor Evans, will present their findings at the OSA Biophotonics Congress: Optics in the Life Sciences meeting, held 2-5 April in San Diego, California, USA.

The Evans group's research centers around the use of a high-resolution imaging technique called coherent anti-Stokes Raman Scatterings (CARS) microscopy, a variant of the more widely used Raman spectroscopy that enables chemically-specific imaging by means of detecting molecular vibrations.

Evans, whose translational research group specializes in microscopy and spectroscopy for understanding cancer and dermatology afflictions, says the common assumption about locating and imaging pheomelanin is that "there's really no good way to see this mostly invisible pigment when it occurs in skin."

But Massachusetts General's chief of dermatology, David Fischer, approached Evans and they decided to collaborate. Evans' research team took on the pheomelanin imaging challenge. "So my team put our heads together, scouring for ways to see it," Evans said.

While another optical technology, called transient absorption microscopy, does offer possibilities for studying pheomelanin, this method is complex and does not easily lend itself to clinical practice.

"We started to look through the Raman literature," Evans said. "Raman spectroscopy is a very mature technique that allows you to detect molecules by their unique chemical vibrations, which are themselves derived from the structure of the molecules. CARS microscopy is a coherent Raman tool that is akin to using a tuning fork to specifically detect molecular structures."

You Must Be Logged In To Post A Comment