DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
Current Location:
> This Story

Log in or Register to rate this News Story
Forward Printable StoryPrint Comment



Health IT Homepage

IBM and Elekta collab to bridge global cancer care gaps Combining Elekta’s MOSAIQ and IBM’s Watson for Oncology

New Jersey health system connects its medical devices to its Epic EHR Cooper University Health Care installs Bernoulli One platform

Securing the cloud in health care is a shared responsibility Lessons learned from luring attackers to a decoy health care website

Nihon Kohden debuts AR and monitoring solutions at HIMSS Enhance ability to correctly place leads and enable continuous monitoring in hospital

Mobile communications devices can increase workplace safety in hospitals How wearable device badges can improve response time when violence erupts

Nuance integrates AI virtual assistant with EPIC EHR Enables data entry, ordering for patients and schedule management by command

Samsung and Philips partner to broaden the connected health ecosystems The companies' platforms will be connected

Novarad brings security and efficiency to smartphones Two new apps, SnapView and AlertView, were debuted at HIMSS

Siemens adds six new partners for Digital Ecosystem platform Now offering clinical laboratory solutions through XIFIN

Zebra Medical's new brain bleed detection algorithm scores CE mark Part of the company's AI business model

Artificial Intelligence applied successfully to orthopedic X-ray images in study

by John W. Mitchell , Senior Correspondent
A team of Swedish researchers said they have, for the first time, demonstrated the feasibility of using deep AI learning for orthopedic trauma radiographs (X-rays). Their study was just published in the Journal of Acta Orthopaedic.

The team created a database of 256,000 wrist, hand and ankle radiographs, composed of four classes of fractures. These included fracture, laterality, body part, and exam view. They then selected five open, available deep learning networks adapted for the images to create a gold standard for fractures. Ankles were the most common body part (38 percent), with right extremity (52 percent) slightly more common than left. The anteroposterior was the most common view.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.

They next compared the network's performance with the findings of two orthopedic surgeons who reviewed the images at the same resolution as the AI network. The accuracy stats in the study indicate that the AI and physicians agreed that a fracture was present in at least 80 percent of cases.

"Our results could be used as a second screening, thereby increasing patient safety and helping junior physicians that lack access to a radiologist, " Dr. Max Gordon, Department of Clinical Sciences, Karolinska Institute, Danderyd Hospital in Stockholm and a member of the research team, told HCB News. "The real benefit will come a few years down the line when we can diagnose a wide range of diseases and ideally also link this knowledge to treatment options."

The study concluded that the findings support further development of the AI application in orthopedics. It takes years of training for orthopedic physicians to train to read such films, yet "inter-observer reliability" can be a big variable in effectiveness and outcomes.

There were certain circumstances in which orthopedic physicians still excel in reading images. These included: the risk of dislocation, classifications, measurements and combining multiple exam views. But, the study concluded, these challenges have technical solutions.

"Even once we have the perfect AI, it is not certain that it will be what doctors and patients expect," Gordon cautioned. "Just as the first smartphones were fun but rather underwhelming, this technology in its first iterations will not solve all our problems."

However, the major intent of the study - to determine if deep AI can be trained to identify fractures - was successful. Given that X-ray still remains the most common and cost-effective orthopedic diagnostic tool worldwide, the research team is encouraged by the results.

"It is a safe bet that that AI will have a large impact, as it has worked well in similar settings," noted Gordon. "There have been interesting developments in areas such as dermatology and breast cancer, where images are an important source of diagnosis."

Health IT Homepage

You Must Be Logged In To Post A Comment

Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Gold Service Dealer Program
Receive RFP/PS
Healthcare Providers
See all
HCP Tools
A Job
Parts Hunter +EasyPay
Get Parts
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to, Inc. Copyright ©2001-2018, Inc.