It's been 55 years since NASA astronaut John Glenn successfully launched into space to complete three orbits aboard the Friendship 7 Mercury spacecraft, becoming the first American to orbit the Earth. The evolution of spaceflight, advancements in science and technologies and the progress of public-private commercial partnerships with companies such as Space X and Blue Horizons have strengthened NASA's goals and the public's confidence to move forward in discovery and human exploration.
More people today are poised to explore space than ever before; those who do will experience the effects of microgravity on the human body. Recognizing the need for data related to those effects, MUSC neuroradiologist Donna Roberts, M.D., conducted a study titled "Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI," the results of which will be featured in the Nov. 2 issue of the New England Journal of Medicine.
"Exposure to the space environment has permanent effects on humans that we simply do not understand. What astronauts experience in space must be mitigated to produce safer space travel for the public," said Roberts.

Ad Statistics
Times Displayed: 125799
Times Visited: 7246 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
While living and working in space can be exciting, space is a hostile environment and presents many physiological and psychological challenges for the men and women of America's space program. For example, NASA astronauts have experienced altered vision and increased pressure inside their heads during spaceflight aboard the International Space Station. These conditions can be serious problems for astronauts, particularly if they occur in low-earth orbit aboard the International Space Station or far from Earth, such as on an exploration mission to Mars.
To describe these symptoms, NASA coined the term visual impairment intracranial pressure syndrome, or VIIP syndrome for short. The cause of VIIP syndrome is thought to be related to the redistribution of body fluid toward the head during long-term microgravity exposure; however, the exact cause is unknown. Given safety concerns and the potential impact to human exploration goals, NASA has made determining the cause of VIIP syndrome and how to resolve its effects a top priority.
Roberts is an associate professor of radiology in the Department of Radiology and Radiological Sciences at MUSC. Before attending medical school at MUSC, she worked at NASA Headquarters in Washington, D.C. Working with NASA's Space Life Sciences Division in the early 1990s, she was already aware of the challenges astronauts faced during long-duration spaceflights. She was concerned about the lack of data describing the adaptation of the human brain to microgravity and proposed to NASA that magnetic resonance imaging (MRI) be used to investigate the anatomy of the brain following spaceflight.