PHILADELPHIA - A novel, intelligent theranostic agent for precise tumor diagnosis and therapy has been developed that remains as small molecules while circulating in the bloodstream, can then self-assemble into larger nanostructures in the tumor, and be activated by the tumor microenvironment for therapy guided by photoacoustic imaging. The research was presented at the 2018 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).
"Although various types of imaging agents have been developed for photoacoustic (PA) imaging, relatively few imaging agents exhibit high selectivity to the tumor microenvironment for on-demand PA imaging and therapy," Dalong Ni, PhD, a postdoctoral scholar in the Molecular Imaging and Nanotechnology Laboratory at the University of Wisconsin-Madison (Website: http://mi.wisc.edu; PI: Weibo Cai, PhD), explains. "In this study, an intelligent theranostic agent of molybdenum-based polyoxometalate clusters (denoted as Ox-POM) was designed. These clusters work like an intelligent "nano-robot" in vivo, first searching the tumor area (which can be noninvasively images with PA imaging) and then killing tumor cells (photothermal therapy after it self-assembled in the tumor microenvironment)."
Ni points out, "Unlike traditional chemotherapy, the designed intelligent Ox-POM clusters, obtained from an easy, fast, and large-scale synthesis process, will only cause damage in tumor areas but not to the normal tissues and organs. Importantly, like most clinical imaging agents, these nanoclusters are mainly excreted through the kidneys, making them highly biocompatible and reducing the potential toxic effects on patients."

Ad Statistics
Times Displayed: 112448
Times Visited: 6718 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
Tumor-bearing mice were tested with this novel system of redox-activated PA imaging-guided photothermal therapy (PTT). Redox is short for reduction-oxidation reaction. In this study, the ultra-small Ox-POM clusters accumulate in the tumor and are reduced in the tumor microenvironment. They then get protonated and self-assemble into much larger nanoparticles that are near-infrared (NIR) absorptive. Systematic in vitro and in vivo experiments were performed to evaluate their bioresponsive and theranostic capability.
Results from positron emission tomography (PET) imaging with zirconium-89-labeled Ox-POM showed these clusters could escape from recognition by the liver and spleen and were mainly excreted through the kidneys, which is highly desirable for reducing potential toxic effects. Studies in the tumor-bearing mice showed that the PA signal was detected in the tumors as early as one hour post-injection. Under laser irradiation, the temperature of the tumor rapidly increased, reaching above 40 °C in 30 seconds and reaching 52 °C in five minutes; the tumor growth was eliminated without subsequent recurrence for a prolonged period of up to 2 months, whereas the control groups demonstrated rapid tumor growth.