Long-lasting radionuclide therapy for advanced neuroendocrine tumors proves effective
Press releases may be edited for formatting or style | June 26, 2018
CT
Molecular Imaging
PET
X-Ray
PHILADELPHIA - A first-in-human study presented at the 2018 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) demonstrates the benefits and safety of a new, long-lasting type of radionuclide therapy for patients with advanced, metastatic neuroendocrine tumors (NETs).
Lutathera-177 (177Lu)-DOTATATE (trade name Lutathera), a peptide receptor radionuclide tharapy (PRRT) with radiolabeled somatostatin analogues (peptides), was recently approved by the U.S. Food and Drug Administration for the treatment of NETs. It is the therapeutic part of a nuclear medicine theranostic pairing. Gallium-68 (68Ga)-DOTATATE is the diagnostic agent used in positron emission tomography/computed tomography (PET/CT) scans that first locates and marks the lesions for follow-up with targeted PRRT delivery directly to the tumor cells which express high levels of somatostatin receptors (SSTRs). Because the PRRT binds to receptors expressed by the tumor cells, healthy cells are unharmed.
However, the peptide quickly clears from the blood through the kidneys limiting the accumulation of radioactivity within tumors and making additional treatment cycles necessary to provide the therapeutic dose.
This first-in-human, first-in-class, Phase I trial (ID: NCT03308682) investigated the safety and dosimetry of a novel long-lasting radiolabeled somatostatin analogue that adds an albumin-binding Evans blue (EB, an azo dye) derivative to 177Lu-DOTATATE. Albumin, the most abundant plasma protein in human blood, is a natural transport protein and has a long circulatory half-life.
"177Lu-DOTA-EB-TATE is a "three-in-one" therapeutic compound, with an octreotate peptide to find the tumor, an Evans blue motif, which uses endogenous albumin as a reversible carrier to effectively extend the half-life in the blood and substantially increase targeted accumulation and retention within the tumor, and a therapeutic radionuclide to kill the tumor cells, to finally provide effective treatment of NETs," explains Shawn(Xiaoyuan) Chen, PhD, senior investigator, of National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health , Bethesda, Maryland.
For the study, conducted in collaboration with researchers at the U.S. National Institute of Biomedical Imaging and Bioengineering, 8 patients (6 men and 2 women ranging in age from 27 to 61 years old) with advanced metastatic neuroendocrine tumors were recruited from Peking Union Medical College Hospital and the Chinese Academy of Medical Sciences in Beijing, China.
|
|
You Must Be Logged In To Post A Comment
|