Optimal regimens
The researchers trained the model on 50 simulated patients, randomly selected from a large database of glioblastoma patients who had previously undergone traditional treatments. For each patient, the model conducted about 20,000 trial-and-error test runs. Once training was complete, the model learned parameters for optimal regimens. When given new patients, the model used those parameters to formulate new regimens based on various constraints the researchers provided.

Ad Statistics
Times Displayed: 112448
Times Visited: 6718 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
The researchers then tested the model on 50 new simulated patients and compared the results to those of a conventional regimen using both TMZ and PVC. When given no dosage penalty, the model designed nearly identical regimens to human experts. Given small and large dosing penalties, however, it substantially cut the doses' frequency and potency, while reducing tumor sizes.
The researchers also designed the model to treat each patient individually, as well as in a single cohort, and achieved similar results (medical data for each patient was available to the researchers). Traditionally, a same dosing regimen is applied to groups of patients, but differences in tumor size, medical histories, genetic profiles, and biomarkers can all change how a patient is treated. These variables are not considered during traditional clinical trial designs and other treatments, often leading to poor responses to therapy in large populations, Shah says.
"We said [to the model], 'Do you have to administer the same dose for all the patients? And it said, 'No. I can give a quarter dose to this person, half to this person, and maybe we skip a dose for this person.' That was the most exciting part of this work, where we are able to generate precision medicine-based treatments by conducting one-person trials using unorthodox machine-learning architectures," Shah says.
Written by Rob Matheson, MIT News Office
Back to HCB News