Over 450 Total Lots Up For Auction at Three Locations - CO 05/12, PA 05/15, NY 05/20

Statement from FDA commissioner Scott Gottlieb, on steps toward a new, tailored review framework for artificial intelligence

Press releases may be edited for formatting or style | April 03, 2019 Artificial Intelligence

The artificial intelligence technologies granted marketing authorization and cleared by the agency so far are generally called “locked” algorithms that don’t continually adapt or learn every time the algorithm is used. These locked algorithms are modified by the manufacturer at intervals, which includes “training” of the algorithm using new data, followed by manual verification and validation of the updated algorithm. But there’s a great deal of promise beyond locked algorithms that’s ripe for application in the health care space, and which requires careful oversight to ensure the benefits of these advanced technologies outweigh the risks to patients. These machine learning algorithms that continually evolve, often called “adaptive” or “continuously learning” algorithms, don’t need manual modification to incorporate learning or updates. Adaptive algorithms can learn from new user data presented to the algorithm through real-world use. For example, an algorithm that detects breast cancer lesions on mammograms could learn to improve the confidence with which it identifies lesions as cancerous or may learn to identify specific subtypes of breast cancer by continually learning from real-world use and feedback.

We are exploring a framework that would allow for modifications to algorithms to be made from real-world learning and adaptation, while still ensuring safety and effectiveness of the software as a medical device is maintained. A new approach to these technologies would address the need for the algorithms to learn and adapt when used in the real world. It would be a more tailored fit than our existing regulatory paradigm for software as a medical device. For traditional software as a medical device, when modifications are made that could significantly affect the safety or effectiveness of the device, a sponsor must make a submission demonstrating the safety and effectiveness of the modifications. With artificial intelligence, because the device evolves based on what it learns while it’s in real world use, we’re working to develop an appropriate framework that allows the software to evolve in ways to improve its performance while ensuring that changes meet our gold standard for safety and effectiveness throughout the product’s lifecycle—from premarket design throughout the device’s use on the market. Our ideas are the foundational first step to developing a total product lifecycle approach to regulating these algorithms that use real-world data to adapt and improve.

stats Advertisement
DOTmed text ad

Training and education based on your needs

Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money

stats

You Must Be Logged In To Post A Comment