A group of researchers led by Leif Schroeder from the Leibniz-Forschungsinstitut fuer Molekulare Pharmakologie (FMP) have found a way to detect metastases in certain types of cancer in the brain at an early stage, using only minimal amounts of contrast agent. To this end, the team uses a synthetic molecule that helps to detect the formation of new blood vessels, producing much more sophisticated imaging than is possible with conventional methods of diagnosis. The results have now been published in Advanced Biosystems.
Some types of cancer - including breast cancer - may induce the formation of brain metastases. Increased development of new small blood vessels (capillaries) is an early sign of abnormal tissue changes. Conventional contrast agents used in magnetic resonance imaging (MRI) for examining the brain are not suitable for the direct and early detection of newly forming cells. "For this, we need a contrast agent that considerably increases the sensitivity of MRI by greatly improving the contrast structure, and that is only needed in tiny amounts," explained FMP researcher Dr. Leif Schroeder.
His group has been working for a long time to develop new contrast agents that detect artificially magnetized xenon in tissue and that cause signals even in small quantities. In his efforts to create a contrast agent especially suited for use in vascular cells of the so-called blood-brain barrier, the physicist was able to draw on preliminary work undertaken by his FMP colleague Dr. Margitta Dathe, who had developed a similar structure for drug transport to these cells in inner vascular walls of the brain. This peptide structure forms so-called micelles, aggregates of around 19 molecules that cluster spontaneously.

Ad Statistics
Times Displayed: 112448
Times Visited: 6718 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
To utilize micelles for diagnostic purposes, Schroeder and his team had them modified: "We inserted molecular cages - synthetic molecules shaped like a hollow soccer ball - that we can temporarily fill with xenon. We were therefore able to 'switch on' 19 xenon loads per micelle for the image contrast, enabling us to directly visualize this type of tumor-forming cells," reported Leif Schroeder.
First, he and his team tested whether the modified version of the structure developed by Margitta Dathe would still form micelles. "Fortunately, the molecules behaved in the same way, despite the insertion of cages, and formed micelles composed of 19 units each," the researcher remarked. The micelles were then supposed to interact with large amounts of xenon.