Stratasys enhances digital anatomy 3D printer to bring ultra-realistic simulation and realism to functional bone models

Over 1050 Total Lots Up For Auction at Three Locations - OK 05/12, CA 05/14, NJ 05/24

Stratasys enhances digital anatomy 3D printer to bring ultra-realistic simulation and realism to functional bone models

Press releases may be edited for formatting or style | December 03, 2020 3D Printing
EDEN PRAIRIE, Minn. & REHOVOT, Israel--(BUSINESS WIRE)-- 3D printing leader Stratasys Ltd. (NASDAQ: SSYS) has enhanced its J750 Digital Anatomy™ 3D printer with advanced bone capabilities that don’t just look real but are actually biomechanically realistic, backed by clinical research. The software upgrade enables the systems to mimic porous bone structures, fibrotic tissue, and ligaments so medical professionals can create models that behave just like human bone.

The Digital Anatomy printer was first introduced a year ago, with an initial focus on mimicking soft cardiology tissues, such as hearts and blood vessels, using powerful Digital Anatomy software and materials like GelMatrix™ and TissueMatrix™. The technology has helped healthcare providers improve surgical preparedness and medical device makers to conduct testing and train medical professionals on new devices. BoneMatrix™ material with the enhanced software capabilities extends those benefits to orthopedic applications.

“We believe that better preparation leads to better clinical outcomes,” said Vice President Osnat Philipp, who leads the global healthcare team at Stratasys. “The mechanical properties of bone are so fundamental to the ability of our skeletons to support movement, provide protection for our vital organs and ultimately affect our quality of life. Being able to 3D print models that are biomechanically accurate and unique to each patient is critical to that preparation.”

Servicing GE/Siemens Nuclear Medicine equipment with OEM trained engineers

Numed, a well established company in business since 1975 provides a wide range of service options including time & material service, PM only contracts, full service contracts, labor only contracts & system relocation. Call 800 96 Numed for more info.

Despite the high demand for bone models, traditional model options have serious shortcomings. The medical industry has traditionally used human bone from cadavers, or legacy 3D printing solutions, all of which have proven inadequate. Human bone is expensive, difficult to obtain, and hard to acquire with the precise pathology characteristics needed, such as with tumors or reflecting different ages. Off-the-shelf manufactured bone models also lack those patient-specific characteristics, and other traditional 3D printing solutions are biomechanically unrealistic. In contrast, whether inserting a screw or drilling or sawing a bone, medical professionals can expect haptic feedback from Digital Anatomy models that is very realistic, and each model can be created from an actual patient scan.

3D-printed skull and spine models for physician training workshops allow doctors to practice cutting and drilling bones, said a medical director at a children’s hospital in Florida. Her focus has been on using state-of-the-art simulation to transform pediatric training and education. “The opportunities seem endless to me because doctors can ‘operate before they operate,’” she said. “It’s going to decrease surgical time, it’s going to decrease morbidity and mortality, and help us decrease anesthesia time, which is better for brain development.”

You Must Be Logged In To Post A Comment