Many of the studies were hampered by issues with poor quality data, poor application of machine learning methodology, poor reproducibility, and biases in study design. For example, several training datasets used images from children for their ‘non-COVID-19’ data and images from adults for their COVID-19 data. “However, since children are far less likely to get COVID-19 than adults, all the machine learning model could usefully do was to tell the difference between children and adults, since including images from children made the model highly biased,” said Roberts.
Many of the machine learning models were trained on sample datasets that were too small to be effective. “In the early days of the pandemic, there was such a hunger for information, and some publications were no doubt rushed,” said Rudd. “But if you’re basing your model on data from a single hospital, it might not work on data from a hospital in the next town over: the data needs to be diverse and ideally international, or else you’re setting your machine learning model up to fail when it’s tested more widely.”

Ad Statistics
Times Displayed: 63870
Times Visited: 2092 Ampronix, a Top Master Distributor for Sony Medical, provides Sales, Service & Exchanges for Sony Surgical Displays, Printers, & More. Rely on Us for Expert Support Tailored to Your Needs. Email info@ampronix.com or Call 949-273-8000 for Premier Pricing.
In many cases, the studies did not specify where their data had come from, or the models were trained and tested on the same data, or they were based on publicly available ‘Frankenstein datasets’ that had evolved and merged over time, making it impossible to reproduce the initial results.
Another widespread flaw in many of the studies was a lack of involvement from radiologists and clinicians. “Whether you’re using machine learning to predict the weather or how a disease might progress, it’s so important to make sure that different specialists are working together and speaking the same language, so the right problems can be focused on,” said Roberts.
Despite the flaws they found in the COVID-19 models, the researchers say that with some key modifications, machine learning can be a powerful tool in combatting the pandemic. For example, they caution against naive use of public datasets, which can lead to significant risks of bias. In addition, datasets should be diverse and of appropriate size to make the model useful for different demographic group and independent external datasets should be curated.
In addition to higher quality datasets, manuscripts with sufficient documentation to be reproducible and external validation are required to increase the likelihood of models being taken forward and integrated into future clinical trials to establish independent technical and clinical validation as well as cost-effectiveness.
Back to HCB News