Over 450 Total Lots Up For Auction at Three Locations - CO 05/12, PA 05/15, NY 05/20

Medical AI models rely on 'shortcuts' that could lead to misdiagnosis of COVID-19

Press releases may be edited for formatting or style | June 01, 2021 Artificial Intelligence

The team then applied explainable AI techniques, including generative adversarial networks and saliency maps, to identify which image features were most important in determining the models' predictions.

The researchers trained the models on a second dataset, which contained positive and negative COVID-19 cases drawn from similar sources, and was therefore presumed to be less prone to confounding. But even those models exhibited a corresponding drop in performance when tested on external data.

stats Advertisement
DOTmed text ad

Training and education based on your needs

Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money

stats

These results upend the conventional wisdom that confounding poses less of an issue when datasets are derived from similar sources. They also reveal the extent to which high-performance medical AI systems could exploit undesirable shortcuts rather than the desired signals.

"My team and I are still optimistic about the clinical viability of AI for medical imaging. I believe we will eventually have reliable ways to prevent AI from learning shortcuts, but it's going to take some more work to get there," said senior author Su-In Lee, a professor in the Allen School. "Going forward, explainable AI is going to be an essential tool for ensuring these models can be used safely and effectively to augment medical decision-making and achieve better outcomes for patients."

Despite the concerns raised by the team's findings, it is unlikely that the models the team studied have been deployed widely in the clinical setting, DeGrave said. While there is evidence that at least one of the faulty models - COVID-Net - was deployed in multiple hospitals, it is unclear whether it was used for clinical purposes or solely for research.

"Complete information about where and how these models have been deployed is unavailable, but it's safe to assume that clinical use of these models is rare or nonexistent," DeGrave said. "Most of the time, healthcare providers diagnose COVID-19 using a laboratory test, PCR, rather than relying on chest radiographs. And hospitals are averse to liability, making it even less likely that they would rely on a relatively untested AI system."

Researchers looking to apply AI to disease detection will need to revamp their approach before such models can be used to make actual treatment decisions for patients, Janizek said.

"Our findings point to the importance of applying explainable AI techniques to rigorously audit medical AI systems," Janizek said. "If you look at a handful of X-rays, the AI system might appear to behave well. Problems only become clear once you look at many images. Until we have methods to more efficiently audit these systems using a greater sample size, a more systematic application of explainable AI could help researchers avoid some of the pitfalls we identified with the COVID-19 models."

You Must Be Logged In To Post A Comment