Over 1650 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12, PA 05/15

Scientists Identify New Leads for Treating Parasitic Worm Disease

by Robert Garment, Executive Editor | March 16, 2008

"The search for new drugs for schistosomiasis is imperative if we are to control this devastating disease that exacts an enormous toll, both in terms of human suffering and economic development," said NIAID Director Anthony S. Fauci, M.D.

The new research, which was conducted with Schistosoma maintained in laboratory conditions, shows that an oxadiazole compound was effective in inhibiting a crucial worm enzyme, called thioredoxin glutathione reductase (TGR). Furthermore, in tests of laboratory mice infected with Schistosoma, this compoundkilled the parasite in all of its stages, from larva to adult. The results exceeded all benchmarks set by the World Health Organization for potential new compounds to treat schistosomiasis. Importantly, the researchers also showed that the compound was active against all three major species of Schistosoma worms that infect humans.

stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats

"This builds upon my lab's previous findings that Schistosoma worms survive in the host due to a protective enzyme TGR. By teaming with NCGC, we were able to move our research one step closer to the clinic by identifying a class of compounds that specifically target that enzyme," said the study's lead researcher, David L. Williams, Ph.D., a professor of biology at ISUand NIAID grantee. "Still, much remains to be done. Our ultimate goal is to see our basic biological findings translated into help for people with schistosomiasis."

The TGR project submitted to NCGC by Dr. Williams' group was the first one officially accepted for screening by the NIH Roadmap Molecular Libraries Initiative. The results of that collaboration underscore the value of a new paradigm established by the NCGC, which is administered by the National Human Genome Research Institute (NHGRI). The high-tech center offers academic researchers, such as the ISU team, the opportunity to tap into a robotic system for quickly screening large numbers of chemical compounds for biological activity.

"Chemical genomic advances are being used to develop a new approach to a parasite that has afflicted countless generations of humankind," said NHGRI Director Francis S. Collins, M.D., Ph.D. "This study showcases the beauty of high-throughput chemical screening for biomedical applications."

NCGC Director Christopher P. Austin, M.D., who is a co-author of the Nature Medicine paper, said "Our center has brought pharmaceutical-scale chemical screening, informatics and medicinal chemistry to bear on neglected diseases that affect millions globally, but are not worked on by the pharmaceutical industry since they cannot generate the needed financial returns. This study demonstrates the wonderful things that can happen when the NCGC's scientific capabilities and infrastructure are combined with the biological expertise of individual academic investigators."

For more information on schistosomiasis, go to: cdc.gov/ncidod/dpd/parasites/schistosomiasis


Back to HCB News