DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment

 

Molecular Imaging Homepage

Phase I trial demonstrates safe use of radiotracer produced in minutes Manufactured using a Ga-68 generator and a cold kit vial

Bracco Imaging acquires SurgVision Enables development of a real-time fluorescence image guided surgery platform

Blue Earth Diagnostics inks Axumin deal with Seibersdorf Laboratories Manufacturing and distribution in certain European countries

Two new imaging agents may help physicians make better and quicker treatment decisions Could determine therapy response in 24 hours

Researchers develop targeted alpha therapy protocol for prostate cancer Determines most effective therapy with the least number of side effects

Eyeing theranostics, Sofie Biosciences completes acquisition of Zevacor Pharma Growth of FDG also influenced decision

Blue Earth Diagnostics partners with GE to manufacture Axumin PET agent in UK Agreements were made in other European countries

RefleXion Medical selects MedCrypt to secure its new radiotherapy technology Updated FDA guidelines put cybersecurity at forefront

PET imaging used for the first time to evaluate Zika virus in mouse model May aid in development of therapeutic agents

Philips introduces its CardioMD IV SPECT system at ASNC meeting Smaller footprint and lower cost of ownership

Radiopharmaceutical supply and demand in the era of precision medicine

By Michael L. Nickels, Michael L. Schulte and H. Charles Manning
From the June 2017 issue of DOTmed HealthCare Business News magazine

In recent years, medical imaging, including magnetic resonance imaging (MRI), X-ray, computed tomography (CT), ultrasound, optical and positron emission tomography (PET), has reached the forefront of indispensable tools used by medical doctors to diagnose, treat and monitor the cellular and molecular underpinnings of diseases on a patient-by-patient basis.

With the increasing need for more information to be gained from each individual diagnostic test, scientists have been harnessing the characteristics of diseases unique to each patient to aid in determination of treatment planning. Surveys of the distinctive chemistries of individual tissues within a living organism cannot be accomplished with classic anatomical imaging techniques, such as X-ray, CT and ultrasound, but require molecular imaging techniques, such as PET. No other individual test can be claimed to be more influential for the growth of PET above 2-deoxy-2(18F)fluoro-D-glucose or [18F]FDG.

Story Continues Below Advertisement

Servicing GE Nuclear Medicine equipment with OEM trained engineers

We offer full service contracts, PM contracts, rapid response, time and material,camera relocation. Nuclear medicine equipment service provider since 1975. Click or call now for more information 800 96 NUMED



Early studies found that synthetic analogs of glucose containing a fluorine in place of a hydroxyl group in the 2 position of the carbohydrate backbone were easily and rapidly taken up by cells, but became trapped within the cells as the normal glucose metabolic pathways could not progress past the first phosphorylation event.

This resulted in an accumulation of these glucose analogs within the cell and could, by extension, be seen within cells with elevated glycolytic activity, such as rapidly proliferating cancer cells. By replacing the normal fluorine atom in these compounds with the radioactive isotope fluorine-18, [18F]FDG PET was born. First administered to healthy human volunteers in 1976, the compound quickly gained favor as an imaging agent for a variety of neuropsychiatric disorders, but arguably found its greatest utilization in the world of oncology.

With the rapidly evolving technology of both producing [18F]FDG and detecting the radioactivity produced in a three dimensional field of view, the supply of the drug has far out-weighed the demand in recent years. One could argue that the technology involved in the production of [18F]FDG, primarily the cyclotron production of the raw fluorine-18 and the automated synthetic units used to produce the drug, has outpaced the demand for the drug in such a way that the field has been flush with availability, causing a dramatic downturn in the price per dose in recent years. In reality, the relatively low cost per dose of [18F]FDG has been a benefit for facilities that purchase the drug from commercial vendors, but has been highly detrimental to the facilities that prepare the drug for internal use and rely on reimbursement to subsidize the cost of production and auxiliary research and development.
  Pages: 1 - 2 >>

Molecular Imaging Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2017 DOTmed.com, Inc.
ALL RIGHTS RESERVED