• Establishing a UK multi-modal mass spectrometry imaging facility to deliver world-beating imaging of tumours and to support chemical and biological imaging needs of biomedical researchers in industry and academia. The facility is the first of its kind in the UK, and will focus on more personalised diagnosis through better understanding of disease, more effective treatments of cancer (including by quantifying the extent of a tumour), and reducing time and costs in drug development (by identifying failing drug formulations earlier in the development process before expensive clinical trials).
• Creating a new centre to accelerate medical imaging technologies through the Industrial Strategy Challenge Fund. The centre will support companies developing innovative imaging technologies to accelerate development and adoption of their products, with an initial focus on new medical imaging technologies. In the heavily regulated healthcare sector, robust and reliable measurements are an essential component of bringing new products to market, clinical trials and effective healthcare practices. Working closely with a broad range of stakeholders (large companies and SMEs in the medical equipment and pharmaceutical sectors, leading clinicians, academic groups and Innovate UK Catapults), NPL will ensure that the latest measurement techniques and best practice to assess, validate and commission innovative imaging technologies are developed and widely adopted.

Ad Statistics
Times Displayed: 21862
Times Visited: 433 Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money
• Creating a new family of antibiotics to fight antimicrobial resistance (AMR). NPL is working to discover, screen and validate new classes of antimicrobials with Ingenza and the University of Plymouth, through an Innovate UK grant, to tackle AMR, a problem that some estimate could cause up to 10 million deaths each year by 2050[3]. The project will use a range of antimicrobials, called epidermicins, that naturally target superbugs like MRSA, and look to enhance the range of bacteria they can kill as well as the potency at which they can do this. The project will also look to scale up production of these antimicrobials for further testing and clinical trials, to accelerate their development. In addition to this project, NPL is working with University College London to convert a breast milk protein into an artificial virus that kills bacteria on contact.
• Currently in development, a new medical device to improve diabetic life expectancy and quality of life, using thermal mapping (thermography), funded by the National Institute for Health Research (NIHR). Diabetic foot ulceration (DFU) is a common complication in diabetes, and can often lead to amputation if untreated. 50% of patients die within 5 years of developing an ulcer[4] and ulceration is estimated to cost the NHS £1 billion per year[5]. NPL's breakthrough medical imaging device, called DFIRST, uses temperature changes – identifiable before visible signs – which provide an early alert of problems and enable preventative action, reducing or even eliminating the ulceration and associated risk of infection. The technology is potentially suitable for home use, empowering patients in their own care and monitoring risk throughout their life.