DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story

starstarstarstarstar (1)
Log in or Register to rate this News Story
Forward Printable StoryPrint Comment

 

 

CT Homepage

Berlin institute sets world record for fastest 3D tomographic images Produces an image every 40 milliseconds with more affordable system

Richardson Healthcare obtains ISO 13485:2016 certification Strengthens its status as a CT and power grid tube manufacturer

New brands, proven experts lead a new era in the CT tube market The CT market has changed a lot over the last couple years

MaxQ-AI seeks $8 million public IPO listing on Nasdaq Will help FDA regulatory processes for Accipio software products

Is a CT tube crisis on the horizon? As more scanners enter the market, will tubes be sufficiently available?

Siemens and NuVasive collab to enhance spinal surgery Combines NuVasive's Pulse system with Siemens Cios Spin

NIH grants $1.5 million to Magnetic Insight for development of new imaging modality Uses non-radioactive, iron oxide nanoparticle tracer

China hits back with new tariffs affecting medical imaging equipment More than 5,000 items affected, including X-ray tubes and gamma-ray equipment

Bracco Imaging and Duke form CT R&D collaboration Developing software to improve contrast CT administration

Elizabeth Krcik, Denise Yost and Liberty Adair ARRT honors three in I Am the Gold Standard program

Glassbeam has expanded its technology for
detecting anomalies in components of
CT scanners such as tube temperature

Glassbeam unveils AI anomaly detection for imaging modality maintenance

by John R. Fischer , Staff Reporter
Maintenance and repair for CT scanners may soon be more immediate, less frequent and more affordable following the upcoming expansion of Glassbeam Inc.’s anomaly detection technology.

The machine data analytics company elaborated on the development at the AAMI 2018 Conference and Expo in Long Beach, California, referring to it as a part of its approach for utilizing AI capabilities to detect and alert providers to changes in components of computed tomography scanners from tube temperature to waterflow. They plan to eventually include other critical imaging modalities such as MR.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



“Instead of a human being saying that the temperature pressure has shot beyond portable range, the machine alerts you by looking up the historical data of the temperature reading and saying the temperature should be between this high range and this low range. That is the anomaly direction model,” Puneet Pandit, president and CEO of Glassbeam, told HCB News. “The machine will look at the historical data, create the threshold and then alert the engineers when the threshold is crossed.”

CT scanners are equipped with sensors for monitoring different variables such as water temperature, waterflow, air temperature, fan speed, and tube temperature. Though each sensor periodically records its readings to determine if tracked variables are in the normal range, the task of accurately identifying which sensor readings are in the normal range and which ones are not is complex, often leading many to use a rule of thumb to form manually-defined thresholds.

ML-based AD techniques use historical data to train a model that can be used for detecting anomalous sensor values.

With Glassbeam’s technology, providers can utilize machine learning-based AD techniques to predict anomalies from historical data sets and address issues earlier, saving millions in maintenance costs, as well as being able to plan out more efficiently strategic actions for the management of their imaging modalities.

In addition to detecting single abnormal readings, the technology may be used to detect combinations of these readings from two or more different sensors, further helping Glassbeam raise mean time between failures and machine uptime from the industry standard range of 96-97 percent to more than 99.5 percent.

The expansion is the second phase of an initiative launched in February in which machine learning was deployed to detect with high accuracy tube failure in CTs, seven to ten days prior to the actual occurrence of such events.
  Pages: 1 - 2 >>

CT Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2018 DOTmed.com, Inc.
ALL RIGHTS RESERVED