dismiss

Clean Sweep Live Auction on Wed. February 27th. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment
Advertisement

 

advertisement

 

Health IT Homepage

Q&A with Dr. David Asch, executive director of the Penn Medicine Center for Health Care Innovation What can be done to make EHRs a more seamless part of hospital workflow?

NewYork-Presbyterian partners with Philips on remote monitoring Expansive telehealth program aims to reduce readmissions, ER visits

Medical device cybersecurity: Need for practical solutions Experts from ECRI Institute address the number one threat to healthcare delivery

Datatrak launches system for unifying imaging capture and adjudication workflows Enhances clinical trials, takes place on Datatrak's Enterprise Cloud platform

Uber and Lyft showcase rideshare for healthcare at HIMSS19 Leading competitors seek to carve out patient transport verticals

What will the right RIS system bring to your imaging department? There is no one-size-fits-all solution for RIS needs

The exam room of the future: Nuance unveils AI-based clinical documentation product at HIMSS Improving patient experience and freeing up physicians

HIMSS Analytics releases new model to help adopt enterprise imaging Eight-stage DIAM model helps organizations track their progress

AI and personalized medicine to raise the bar in radiology reporting New innovations could provide myriad benefits to clinical workflow

Bitfury teams with MDW and Longenesis to create blockchain ecosystem for medical imaging Uphold, distribute and safeguard medical and diagnostic imaging

FWA in healthcare: What the battle against identity thieves can teach us

By Lalithya Yerramilli

When it comes to uncovering fraud, waste, and abuse (FWA) in healthcare, payers and providers can learn a lesson from the ongoing battle against hackers looking to commit identity theft: The culprits are unlikely to be immediately obvious – at least if they don’t want to get caught.

They often hide in plain sight. For example, they may disguise a bogus Wi-Fi connection as one supplied by restaurant or coffee shop, especially near a large corporation. Login to check your email or do a little shopping and zap! – your information is stolen. They also use phishing schemes to make you think you’re responding to a friend or a legitimate company when they ask for your credentials. The more they work to "fit in”, the more successful they’re likely to be.
Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.


Similarly, this is what the more sophisticated participants in FWA in healthcare do. For example, those looking to obtain large quantities of opioids, whether for their own use or to sell to others, don’t go all-in with a single provider or pharmacy. They spread their requests across many providers and pharmacies, keeping the individual numbers at each "under the radar" to avoid calling attention to them. It’s only when you look at them in the aggregate that the numbers become suspicious.

The challenge is that most payers and providers don’t have the human or technology resources to look at the massive quantity of claims data in the aggregate to find the subtle patterns that indicate the possibility of FWA. Given that FWA has been estimated to cost anywhere from $80 billion to $272 billion each year, it’s critical that payers and providers find a new way to address it. This is where adding machine learning to human expertise can make a huge difference in the battle against FWA.

Understanding the relationships through machine learning
Where machine learning excels is in parsing massive amounts of data and hundreds of potential decision points to find hidden patterns and relationships between seemingly unrelated events. These relationships are so subtle, humans will often miss them – a fact those purposely committing FWA count on to hide their activities.

Using predictive analytics, machine learning can quickly build an initial set of models of what the “normal” patterns are, then use those models to detect anomalies or occurrences that fall outside those patterns. It can then alert human experts who can investigate further to determine if an action needs to be taken.

As more information about the outcomes becomes available, the models can be further refined, enabling the organization’s limited resources to focus on the areas where they’re most needed while paring down the number of false positives.
  Pages: 1 - 2 - 3 >>

Health IT Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED