Machine learning overtakes humans in predicting death or heart attack

Machine learning overtakes humans in predicting death or heart attack

Press releases may be edited for formatting or style | May 15, 2019 Artificial Intelligence Cardiology
Lisbon, Portugal – 12 May 2019: Machine learning is overtaking humans in predicting death or heart attack. That’s the main message of a study presented today at ICNC 2019 (1).

The International Conference on Nuclear Cardiology and Cardiac CT (ICNC) is co-organised by the American Society of Nuclear Cardiology (ASNC), the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC), and the European Association of Nuclear Medicine (EANM).

By repeatedly analysing 85 variables in 950 patients with known six-year outcomes, an algorithm “learned” how imaging data interacts. It then identified patterns correlating the variables to death and heart attack with more than 90% accuracy.

Servicing GE/Siemens Nuclear Medicine equipment with OEM trained engineers

Numed, a well established company in business since 1975 provides a wide range of service options including time & material service, PM only contracts, full service contracts, labor only contracts & system relocation. Call 800 96 Numed for more info.

Machine learning, the modern bedrock of artificial intelligence (AI), is used every day. Google’s search engine, face recognition on smartphones, self-driving cars, Netflix and Spotify recommendation systems all use machine learning algorithms to adapt to the individual user.

Study author Dr Luis Eduardo Juarez-Orozco, of the Turku PET Centre, Finland, said: “These advances are far beyond what has been done in medicine, where we need to be cautious about how we evaluate risk and outcomes. We have the data but we are not using it to its full potential yet.”

Doctors use risk scores to make treatment decisions. But these scores are based on just a handful of variables and often have modest accuracy in individual patients. Through repetition and adjustment, machine learning can exploit large amounts of data and identify complex patterns that may not be evident to humans.

Dr Juarez-Orozco explained: “Humans have a very hard time thinking further than three dimensions (a cube) or four dimensions (a cube through time). The moment we jump into the fifth dimension we’re lost. Our study shows that very high dimensional patterns are more useful than single dimensional patterns to predict outcomes in individuals and for that we need machine learning.”

The study enrolled 950 patients with chest pain who underwent the centre’s usual protocol to look for coronary artery disease. A coronary computed tomography angiography (CCTA) scan yielded 58 pieces of data on presence of coronary plaque, vessel narrowing, and calcification. Those with scans suggestive of disease underwent a positron emission tomography (PET) scan which produced 17 variables on blood flow. Ten clinical variables were obtained from medical records including sex, age, smoking and diabetes.

You Must Be Logged In To Post A Comment