by
Barbara Kram, Editor | February 05, 2008
Noting that brain tumors recur with an extremely poor prognosis, Zalutsky said, "There is an incredible need for brain cancer treatments, and this finding gives us a potentially valuable weapon in this fight."
Researchers say future studies may use a "radiotherapeutic cocktail" of both alpha and beta particles attached to the same monoclonal antibody to deliver a treatment with a wider range for larger tumors along with a more focused radiation for smaller tumors or residual cancer cells. Additional studies propose using astatine-211 on other "compartmentalized" cancers, such as ovarian and breast cancers that have spread to the central nervous system. All of these studies, however, will be delayed unless adequate quantities of astatine-211 can be produced.

Ad Statistics
Times Displayed: 45539
Times Visited: 1299 Ampronix, a Top Master Distributor for Sony Medical, provides Sales, Service & Exchanges for Sony Surgical Displays, Printers, & More. Rely on Us for Expert Support Tailored to Your Needs. Email info@ampronix.com or Call 949-273-8000 for Premier Pricing.
"Right now in the United States, there are only three places where the isotope is produced," said Zalutsky, who contributed to the 2007 National Academy of Sciences report that encouraged Congress to increase funding for nuclear medicine research and treatment, including the production of promising isotopes such as astatine-211. "Patients eligible for such studies will be put on hold until our nation invests significantly in the research needed to eradicate these killer diseases."
According to the American Cancer Society, brain cancers are some of the most aggressive and deadly forms of cancer because they typically hide from the immune system and grow unchecked.
RIT is the use of an antibody (or protein produced by the immune system) that recognizes foreign substances, or antigens, and attaches to them. When these antigen-binding antibodies are chemically combined with a radioactive substance, they act as a "guided missile" to deliver a lethal dose of radiation directly to the tumor cells. The antibody's ability to bind to a tumor-associated antigen increases the dose delivered to the tumor cells while decreasing the dose to normal tissues.
Co-authors of "Clinical Experience with Alpha-Particle-Emitting astatine-211: Treatment of Recurrent Brain Tumor Patients with astatine-211-Labeled Chimeric Antitenascin Monolonal Antibody 81C6" include David A. Reardon, Preston Robert Tisch Brain Tumor Center and departments of pediatrics and surgery; Gamal Akabani, department of radiology; R. Edward Coleman, department of radiology; Allan H. Friedman, Preston Robert Tisch Brain Tumor Center and department of surgery; Henry S. Friedman, Preston Robert Tisch Brain Tumor Center and department of surgery; Roger E. McLendon, Preston Robert Tisch Brain Tumor Center and department of pathology; Terence Z. Wong, department of radiology; and Darell D. Bigner, Preston Robert Tisch Brain Tumor Center and department of pathology, all at Duke University Medical Center.