Over 300 Colorado Auctions End Today - Bid Now
Over 150 Total Lots Up For Auction at Two Locations - PA 05/15, NY 05/20

Philips LED HYPERImage Project Advances Research on Hybrid PET/MR Scanner

Press releases may be edited for formatting or style | October 31, 2009
Prototyope Preclinical PET/MR
Orlando, USA - As leader of the European Union funded HYPERImage research project, Royal Philips Electronics (NYSE: PHG, AEX: PHI) today announced that the project has achieved a major milestone in its ambitious plan to create a new medical imaging technique called hybrid PET/MR. This new technique is based on the simultaneous acquisition of time-of-flight Positron Emission Tomography (PET) and Magnetic Resonance (MR) images.

The project involves eight partners from six European countries and has a total budget of around EUR 7 million. The ultimate goals of the project are to advance the accuracy of diagnostic imaging in cardiology and oncology and open up new fields in therapy planning, guidance and response monitoring.

A hybrid PET/MR scanner could simultaneously deliver the anatomical and functional information achievable using state-of-the-art MR scanners (e.g. soft tissue contrast and physiological processes in blood vessels) and the molecular imaging information provided by PET. As a result, it would combine the best of both worlds, which could ultimately help to pinpoint and characterize disease sites within the body more accurately than is currently possible.
stats Advertisement
DOTmed text ad

Training and education based on your needs

Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money

stats
For a hybrid scanner that offers simultaneous PET and MR image acquisition, two fundamental problems need to be solved: the development of MR-compatible PET detectors and a method of accounting for PET attenuation (the scattering of high-energy gamma rays generated by the PET tracers by parts of the human body).

The milestone that the HYPERImage team has reached is the development of a functional gamma-ray detector that meets the performance requirements of the latest time-of-flight PET scanners. The new gamma-ray detectors have been designed to be compatible with the strong static and dynamic magnetic fields that would be present in a combined PET/MR scanner. Furthermore, the team has achieved major progress with respect to MRI-based static and dynamic PET attenuation correction. Details of these results are presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, which takes place on October 25-31 in Orlando, Florida, USA.

"Understanding the molecular mechanisms associated with cardiovascular disease and cancer, and the development of technologies focused on the early detection of these disease processes are the two main challenges of biomedical research," said Prof. Dr. Valentin Fuster, Director of the National Center for Cardiovascular Research in Madrid (one of Europe's leading research centers in cardiology) and the Cardiovascular Institute at the Mount Sinai Medical Center in New York. "I am convinced that the realization of a PET/MR technology platform will significantly help to improve the precision and the moment at which disease is diagnosed, two critical parameters for the successful treatment of many diseases."