Mice that were engineered to have many copies of human apoA-I gene showed very little cancer development when induced with ovarian cancer, while the mice without the extra copies of apoA-I showed much more disease. The mice with extra copies of the apoA-I gene also lived 30 to 50 percent longer than those who didn't receive it.
Farias-Eisner and Reddy wanted to treat the mice that had more cancer with the protein apoA-I, but it was too large to conveniently administer, having 243 amino acids. The researchers then turned to apoA-I mimetic peptides - only 18 amino acids in length - that are being tested for cardiovascular diseases. That project had been ongoing for a number of years at UCLA, said Reddy, who is also a part of the cardiovascular research team led by Dr. Alan M. Fogelman, executive chair of the Department of Medicine.

Ad Statistics
Times Displayed: 114363
Times Visited: 6791 MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013
"The smaller peptides mimic the larger apoA-I protein and provided us with agents we could give to the mouse to see if it was effective in fighting ovarian cancer," said Reddy. "One of the peptides was being tested as an experimental therapy for atherosclerosis, so we already have some information on how it's being tolerated in humans, which would be vital information to have if we progressed to human studies in ovarian cancer."
The peptide, thus far, has caused little to no side effects in atherosclerosis patients, Reddy said, a hopeful sign that it might be well tolerated in ovarian cancer patients.
The mice that were given the peptide by injection had about 60 percent less cancer than the mice that did not receive the peptide, Farias-Eisner said. The peptide also was given in drinking water or in mouse food and proved to be as effective when administered that way.
"It was an exciting result," Farias-Eisner said. "It looked like we had something that could be ingested or injected that might be very effective against ovarian cancer progression."
Farias-Eisner said the peptide avidly binds oxidized lipids, one of which is known to stimulate cancer cells to survive and multiply. In the mouse studies, the mice that received peptide had significantly lower levels of this cancer promoting lipid.
An early phase clinical trial is being planned testing the peptide in patients with aggressive ovarian cancers that are resistant to chemotherapy, a group of patients whose median survival is just 40 months. Farias-Eisner hopes the study will be started and completed within two years.
The study was funded by the Womens Endowment, the Carl and Roberta Deutsch Family Foundation, the Joan English Fund for Women's Cancer Research, the National Institutes of Health and the West Los Angeles Veterans Affairs Medical Center.
UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2010, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 10 of the last 11 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.
Back to HCB News