"Glioblastoma remains one of the diseases for which there is no curative therapy ... and the prognosis for patients with primary malignant brain tumors remains dismal," the study states. "Our results suggest that the mesenchymal gene expression profile may identify an immunogenic sub-group of glioblastoma that may be more responsive to immune-based therapies."
Brad Silver, 41, who grew up in Southern California and now lives in a Cleveland suburb, was diagnosed with glioblastoma in 2003 and was told that he had, at best, two months to live. He was stunned.

Ad Statistics
Times Displayed: 21862
Times Visited: 433 Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money
"I was 33 years and my wife was seven months pregnant with my son," said Silver, a college water polo instructor. 'I didn't think I was going to live to see my son born, let alone grow up."
Silver sought a second opinion at UCLA and the golf-ball sized tumor in his left lateral lobe was removed. He underwent radiation and chemotherapy and enrolled in the vaccine clinical trial. Today, eight years later, he remains cancer free. His son, named Brad Silver II and a miniature version of his dad, will celebrate his eighth birthday in April.
"If I had listened to that first doctor, I would not be here today. If not for Dr. Liau, I would not be here today," Silver said. "I'm 100 percent back to being me because of this vaccine and that clinical trial. It's almost unbelievable."
The vaccine preparation is personalized for each individual. After the tumor is removed, Liau and her team extract the proteins, which provide the antigens for the vaccine to target. After radiation and chemotherapy, the white blood cells are taken from the patient and grown into dendritic cells, a type of white blood cell that is an antigen-presenting cell. The vaccine preparation from this point takes about two weeks, as the dendritic cells are grown together with the patient's own tumor antigens. The tumor-pulsed dendritic cells are then injected back in to the body, prompting the T cells to go after the tumor proteins and fight the malignant cells.
"The body may have trouble fighting cancer because the immune system doesn't recognize it as a foreign invader," Liau said. "The dendritic cells activate the patient's T cells to attack the tumor, basically teaching the immune system to respond to the tumor."
The individualized vaccine is injected into the patient in three shots given every two weeks for a total of six weeks. Booster shots are given once every three months until the cancer recurs. Patients are scanned every two months to monitor for disease recurrence, Liau said.