Over 1650 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12, PA 05/15

Magnetic Field Acts as "Remote Control" to Deliver Nanomedicine

by Barbara Kram, Editor | July 11, 2006

The main side effect associated with photodynamic cancer therapy is the patient's strong sensitivity to light for four to six weeks after treatment, a result of PDT drugs that accumulate in the skin.

"The magnetically guided drug delivery would allow for the use of lower concentrations of the drug to deliver a therapeutic dose, thus significantly reducing the amount of PDT drug that accumulates in normal tissue," said Prasad.

stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats

The UB team achieved these results with a novel nanocarrier system, developed from polymer micelles, which are nanosized, water-dispersible clusters of polymeric molecules.

Prasad explained that polymeric micelles are excellent nanocarriers for PDT drugs, which are mostly water-insoluble.

Along with the photodynamic drug, the UB researchers encapsulated inside the nanocarriers iron oxide nanoparticles, which allowed them to respond to externally applied magnetic fields.

In the experiments, nanocarriers were shown to be efficiently taken up by cultured tumor cells in the area exposed to the magnetic field, as demonstrated by confocal microscopy.

While the team has demonstrated this concept with PDT drugs, Prasad said the technique would be useful in delivering gene therapy, chemotherapy or practically any kind of pharmaceutical treatment into cells.

"Because the nanocarriers proved to be significantly stable and because they retained the PDT drugs, we are optimistic that they will be able to deliver a wide range of therapies to tumors or other disease sites in the body without any significant loss in the circulatory system or in normal tissues," said Prasad.

The team is beginning in vivo studies on the new drug-delivery method.

Preliminary studies in live animals have indicated that an applied magnetic field can effect a localized accumulation in the tumor site, according to Earl J. Bergey, Ph.D., deputy director of biophotonics at the UB institute and a co-author on the paper.

Other co-authors are Ludmila O. Cinteza, Ph.D., former post-doctoral researcher at the institute; Ravindra K. Pandey, Ph.D., professor of biophysical sciences at the Roswell Park Cancer Institute and research professor at the institute and Yudhisthira Sahoo, Ph.D., research assistant professor in the UB Department of Chemistry.

The UB research was funded by the John R. Oishei Foundation, UB's New York State Center of Excellence in Bioinformatics and Life Sciences and by the UB Interdisciplinary Research and Creative Activities Fund. New York State Sen. Mary Lou Rath also has provided generous support to UB's Institute for Lasers, Photonics and Biophotonics.

Full picture caption: Fluorescence microscopic image shows clustering of micelles containing photodynamic therapy and magnetic nanoparticles when external magnetic field is applied.

Back to HCB News