"The Brain Sentinel® system can detect GTCS with a similar sensitivity as epileptologists reviewing vEEG recordings," says author José E. Cavazos, M.D., Ph.D., co-founder of Brain Sentinel and a professor of neurology at the University of Texas Health Science Center in San Antonio. "Neurologists will have ambulatory EMG data to help them interpret the seizure type and an accurate seizure frequency of their patients."
A third study (abstract 3.084) examines the accuracy of two commercially available wristworn devices that detect seizure activity based on changes in heart rate, arterial oxygenation (SpO2) and electrodermal activity (EDA). Researchers from the University of Texas at Dallas and the Texas Epilepsy Group studied 20 patients admitted to a Dallas, Texas Epilepsy Monitoring Unit, gathering data from a total of 24 seizures that occurred during 355 hours of monitoring. Their findings reveal that seizure detection using heart rate, SpO2 and EDA signals is much more accurate than detection by heart rate changes alone.

Ad Statistics
Times Displayed: 22281
Times Visited: 445 Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money
"These findings may allow for the development of a comfortable, easy-to-manage wristworn device capable of recognizing seizures, alerting a caregiver and creating an electronic diary for use by physicians," says author Diana Cogan, a graduate student at the University of Texas at Dallas.
Back to HCB News