DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment

 

 

CT Homepage

Congress to evaluate bill on CT colonography coverage Would expand coverage of CT colonography for colorectal cancer

NIH grants over $1 million to development of non-contrast imaging approaches Will be used to diagnose peripheral arterial disease

China's Infervision brings AI tech to 200th hospital Now in use with approx. 20,000 lung cancer screening scans daily

Philips to manage medical imaging equipment for Aussie providers for 20 years First-of-its-kind partnership in Australia and ASEAN Pacific region

New AI system detects hard-to-see tiny tumors on lung CT scans Teaches itself how to locate tiny tumors

Fractional flow reserve CT can reduce invasive heart procedures: study First clinical study on benefits of FFRCT for moderate stenosis

Fox Chase Cancer Center gets $673K grant to develop early-stage lung cancer test Taking aim at false positive CT lung scans

Patient-physician discussions on lung cancer screenings are inadequate Study finds they don't address potential harm and false positives

Philips partners with Intel on CPU efficiency for medical imaging use cases Pairs Philips' OpenVINO toolkit with Intel Xeon Scalable processors

Study: AI detects neurological issues on CT scans in under two seconds 150 times shorter than average reading time of a physician

Testing demonstrated
91 percent accuracy

Mount Sinai researchers train machine learning tool to understand radiology reports

by Lauren Dubinsky , Senior Reporter
Dr. Eric Oermann of the Icahn School of Medicine at Mount Sinai believes that the future of radiology will involve artificial neural networks that assist physicians in performing daily tasks such as interpreting imaging.

He and his team are using machine learning techniques including natural language processing algorithms to identify clinical concepts in radiology reports for CT scans. Their research was recently published in the journal Radiology.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



“The tools currently available on the market and in development by other groups in academia and industry for the most part employ a similar set of algorithms, with the research tools having a bias toward more advanced techniques in deep learning,” Oermann told HCB News.

His research team is what makes this tool different from the others. Many of the team members are practicing physicians and medical students who are competent machine learning researchers.

“I like to think that at Mount Sinai we're starting from the perspective of physicians and attempting to solve medical problems, rather than starting with technical solutions and trying to fit medical problems to them,” said Oermann.



His team is working on training the tool to understand text reports written by radiologists. They created a series of algorithms to teach it certain terminology, including words like colonoscopy and heartburn.

The training data involved 96,303 radiologist reports on head CT exams that were performed at The Mount Sinai Hospital and Mount Sinai Queens between 2010 and 2016.

The team found that the techniques used in this study resulted in a 91 percent accuracy rate. That demonstrates that it is possible to automatically identify concepts in text from the complex domain of radiology.

When asked whether machine learning techniques are something any hospital and radiology practice will have the financial means to deploy, Oermann replied that algorithms are generally cheaper to deploy than most things in health care.

However, he did note that the final cost will largely depend upon how the techniques are deployed.

CT Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2018 DOTmed.com, Inc.
ALL RIGHTS RESERVED