DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Artificial Intelligence Homepage

Is AI a match for manual interpretation of breast density? Study equates algorithm to experienced mammographer

Surgeons can 'listen' to brain during tumor removal with new technique Can predict likely outcome of removing certain brain tissue

Study illustrated how artificial intelligence works best under direction of radiologists Clinical experience and gut feeling remain irreplaceable

Philips to take on 19 AI enterprises in first global startup collaboration Focus on ideas for clinical and workflow solutions in AI

King’s College London partners with NVIDIA on AI project Raising the bar on radiology for 8 million patients

Deep Lens raises $3.2 million for AI-based cloud platform Aim to make it accessible worldwide and free of charge

New AI approach identifies recalled but benign mammograms May reduce workload by providing more accurate recall selection

Enhancing patient results utilizing robotics and artificial intelligence A look at how new technology is changing stroke treatment

GE to open first-of-its-kind AI-powered Command Center in Europe Better manage growing patient and A&E attendances

CureMetrix to provide AI-CAD solution to DocPanel for second opinion mammograms CmAssist may help improve diagnostic accuracy

AI in medical imaging to top $2 billion by 2023: Signify Research

by Thomas Dworetzky , Contributing Reporter
Through software for automated detection, quantification, decision support and diagnosis, machine learning is making major inroads into medical imaging. The way things are going, the market is likely to top $2 billion by 2023, according to a new Signify Research market report.

Despite years of seemingly relentless hype, it's “becoming increasingly clear that AI will transform the diagnostic imaging industry, both in terms of enhanced productivity, increased diagnostic accuracy, more personalized treatment planning, and ultimately, improved clinical outcomes,” noted the report.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



With its future key role in letting radiologists handle the ever-growing volume of diagnostic imaging data, the issue of investing in the “right” software will remain a challenge.

“Many of the AI-based solutions for medical imaging that are coming to market are positioned as workflow productivity tools, but there is often a lack of clinical validation to show how much time these tools actually save and their real impact on how radiologists work,” Signify analyst and study author Simon Harris told HCB News, noting that, “similarly, there are few large-scale clinical studies on the accuracy of quantitative tools that provide automatic measurements of image features, such as the long and short measurements of lung nodules, and the variability of the results obtained from tools from different vendors.”

Harris advised healthcare providers interested in making an AI investment “to look for vendors who have invested in clinical studies and are able to provide robust clinical evidence to back up their marketing claims.”

The study noted that the development pace “is faster than ever before,” and is leading to a surge in products from more vendors.

"The interest and enthusiasm for AI in the radiologist community has notably increased over the last 12 to 18 months, and the discussion has moved on from AI as a threat, to how AI will augment radiologists,” suggested Harris, adding, “At the same time, there are emerging clinical applications where the use of AI has been shown to both improve clinical outcomes and deliver a return on investment for healthcare providers. Examples include software to detect and diagnose stroke, and analysis tools to measure blood flow in noninvasive coronary exams.”

Still in its innovator and early adopter phase, AI for medical imaging faces several challenges, including a regulatory process that has been slow to approve products and a lack of large-scale studies to illustrate that deep learning algorithms works in real-world clinical settings.
  Pages: 1 - 2 >>

Artificial Intelligence Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2018 DOTmed.com, Inc.
ALL RIGHTS RESERVED