Clean Sweep Live Auction on Thur. March 28th. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
Current Location:
> This Story

Log in or Register to rate this News Story
Forward Printable StoryPrint Comment




Artificial Intelligence Homepage

BSWH to install Glassbeam's CLEAN blueprint to leverage machine uptime Will include integrated CMMS software by EQ2

Beyond the hype: How practical AI is enhancing radiology Insights from Imad B. Nijim, chief information officer for MEDNAX Radiology Solutions

Machine learning reduces false positives for lung cancer in low-dose CT False positives occur at rate of 96 percent

Siemens and ESR present first Digital Experience Hall at ECR Aims to stimulate exchange of thoughts and knowledge about digitization in radiology

Canon showcases CT image reconstruction tech and software upgrade at ECR Removing noise while preserving signals

Personalized cardiac test could eliminate unnecessary catheterizations Examines flow of blood with AI and CT

GE debuts work-in-progress algorithms at ECR 2019 For predicting no-shows and detecting the presence of pneumothoraces

Women's brains appear three years younger than men's at the same age: PET study A machine-learning algorithm assisted with the analysis

AI and personalized medicine to raise the bar in radiology reporting New innovations could provide myriad benefits to clinical workflow

Hologic launches Unifi Analytics to curb mammo downtime Predicting tube failures before they happen and setting performance benchmarks

Study illustrated how artificial intelligence works best under direction of radiologists

by John W. Mitchell , Senior Correspondent
Physician clinical judgment matters when it comes to the use of artificial intelligence (AI) applications, according to a study just published in the Journal of the American College of Radiology.

Combining a radiologist’s opinion and various imaging parameters in an AI algorithm resulted in greater accuracy compared to working with the imaging parameters alone.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.

“The way a radiologist looks at an image to provide interpretation is predominantly anatomical and to an extent, abstract [as it is a factor of] the radiologist's clinical experience and gut feeling,” Dr. Adarsh Ghosh, study author, Department of Radio-diagnosis and Imaging, AIIMS, New Delhi, India told HCB News.

The algorithm deals with image-derived parameters predominantly in a numerical fashion to provide interpretations. His findings, Ghosh explained, prove that the two very different AI and human approaches can be combined to yield greater accuracy and improved patient care.

In the study, he relied on breast imaging data sets from the University of California, Irvine Machine Learning Repository. Three machine learning algorithms were trained to provide cross-validation. The evaluation metrics that were used to compare the two cohorts – AI alone and radiologists/AI combined – included lesion shape, density, and patient demographics. Overall, radiologist oversight outperformed the stand-alone AI application.

“I wanted to address the notion that AI will replace radiologists,” said Ghosh. “The common hype of the radiologist being rendered redundant is unfounded. The radiologist and AI algorithms will work in tandem and, synergistically, may provide a diagnosis which will be closer to the truth.”

Ghosh noted that the study was a very simple design as he used the most basic AI algorithms available. AI algorithms, he explained, are versatile, allowing both continuous and categorical predictors. He believes the paper will set a benchmark for further AI research as radiologist-augmented AI workflow needs more evaluation - especially when it comes to deep learning algorithms.

“The key finding that will interest radiologists is that combining a radiologist's opinion and various image parameters in the AI algorithms obtained greater accuracy than the AI algorithms working on the image parameters alone,” he concluded.

Artificial Intelligence Homepage

You Must Be Logged In To Post A Comment

Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Gold Service Dealer Program
Receive RFP/PS
Healthcare Providers
See all
HCP Tools
A Job
Parts Hunter +EasyPay
Get Parts
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.